Torsion dissipated energy of hard rubbers as function of hyperelastic deformation energy of the Yeoh
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F18%3A00497769" target="_blank" >RIV/61388998:_____/18:00497769 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.24132/acm.2018.422" target="_blank" >http://dx.doi.org/10.24132/acm.2018.422</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.24132/acm.2018.422" target="_blank" >10.24132/acm.2018.422</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Torsion dissipated energy of hard rubbers as function of hyperelastic deformation energy of the Yeoh
Popis výsledku v původním jazyce
In this paper, we are proposing a new formulation of dissipated energy of hard rubbers as a function of the deformation energy expressed by the Yeoh hyperelastic model. Torsion deformation is considered as a planar deformation of a simple shear on the surface of a cylinder. Thus the deformation energy is dependent only on the first invariant of strain. Based on the experiment, a “hyperelastic proportional damping” (HPD) is proposed for hard rubbers under finite strains. Such damping is analogical to the model of proportional damping in the linear theory of viscoelasticity, i.e. the dissipated energy is proportional to the deformation energy multiplied by the frequency of dynamic harmonic loading. To obtain the experimental data, samples of hard EPDM rubbers of different harnesses were dynamically tested on a torsional test rig for different frequencies and amplitudes. The Yeoh model is chosen since the deformation function is dependent only on the first strain invariant for the description of the simple shear of a surface cylinder. The Yeoh constants are evaluated by curve fitting of the analytical stress function to the experimental torsion stress-deformation curve. The constants are used to express the deformation energy of the Yeoh model for specific cases of tested rubbers. The coefficients of hyperelastic proportional damping are evaluated on the basis of experimental results.
Název v anglickém jazyce
Torsion dissipated energy of hard rubbers as function of hyperelastic deformation energy of the Yeoh
Popis výsledku anglicky
In this paper, we are proposing a new formulation of dissipated energy of hard rubbers as a function of the deformation energy expressed by the Yeoh hyperelastic model. Torsion deformation is considered as a planar deformation of a simple shear on the surface of a cylinder. Thus the deformation energy is dependent only on the first invariant of strain. Based on the experiment, a “hyperelastic proportional damping” (HPD) is proposed for hard rubbers under finite strains. Such damping is analogical to the model of proportional damping in the linear theory of viscoelasticity, i.e. the dissipated energy is proportional to the deformation energy multiplied by the frequency of dynamic harmonic loading. To obtain the experimental data, samples of hard EPDM rubbers of different harnesses were dynamically tested on a torsional test rig for different frequencies and amplitudes. The Yeoh model is chosen since the deformation function is dependent only on the first strain invariant for the description of the simple shear of a surface cylinder. The Yeoh constants are evaluated by curve fitting of the analytical stress function to the experimental torsion stress-deformation curve. The constants are used to express the deformation energy of the Yeoh model for specific cases of tested rubbers. The coefficients of hyperelastic proportional damping are evaluated on the basis of experimental results.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-04546S" target="_blank" >GA16-04546S: Aeroelastické vazby a dynamické chování rotačně periodických těles</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied and Computational Mechanics
ISSN
1802-680X
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
9
Strana od-do
111-118
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85059859377