Inverse mass matrix for isogeometric explicit transient analysis via the method of localized Lagrange multipliers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F19%3A00502781" target="_blank" >RIV/61388998:_____/19:00502781 - isvavai.cz</a>
Výsledek na webu
<a href="https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5986" target="_blank" >https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5986</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nme.5986" target="_blank" >10.1002/nme.5986</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inverse mass matrix for isogeometric explicit transient analysis via the method of localized Lagrange multipliers
Popis výsledku v původním jazyce
A variational framework is employed to generate inverse mass matrices for isogeometric analysis (IGA). As different dual bases impact not only accuracy but also computational overhead, several dual bases are extensively investigated. Specifically, locally discontinuous biorthogonal basis functions are evaluated in detail for B-splines of high continuity and Bezier elements with a standard C-0 continuous finite element structure. The boundary conditions are enforced by the method of localized Lagrangian multipliers after generating the inverse mass matrix for completely free body. Thus, unlike inverse mass matrix methods without employing the method of Lagrange multipliers, no modifications in the reciprocal basis functions are needed to account for the boundary conditions. Hence, the present method does not require internal modifications of existing IGA software structures. Numerical examples show that globally continuous dual basis functions yield better accuracy than locally discontinuous biorthogonal functions, but with much higher computational overhead. Locally discontinuous dual basis functions are found to be an economical alternative to lumped mass matrices when combined with mass parameterization. The resulting inverse mass matrices are tested in several vibration problems and applied to explicit transient analysis of structures.
Název v anglickém jazyce
Inverse mass matrix for isogeometric explicit transient analysis via the method of localized Lagrange multipliers
Popis výsledku anglicky
A variational framework is employed to generate inverse mass matrices for isogeometric analysis (IGA). As different dual bases impact not only accuracy but also computational overhead, several dual bases are extensively investigated. Specifically, locally discontinuous biorthogonal basis functions are evaluated in detail for B-splines of high continuity and Bezier elements with a standard C-0 continuous finite element structure. The boundary conditions are enforced by the method of localized Lagrangian multipliers after generating the inverse mass matrix for completely free body. Thus, unlike inverse mass matrix methods without employing the method of Lagrange multipliers, no modifications in the reciprocal basis functions are needed to account for the boundary conditions. Hence, the present method does not require internal modifications of existing IGA software structures. Numerical examples show that globally continuous dual basis functions yield better accuracy than locally discontinuous biorthogonal functions, but with much higher computational overhead. Locally discontinuous dual basis functions are found to be an economical alternative to lumped mass matrices when combined with mass parameterization. The resulting inverse mass matrices are tested in several vibration problems and applied to explicit transient analysis of structures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical Methods in Engineering
ISSN
0029-5981
e-ISSN
—
Svazek periodika
117
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
28
Strana od-do
939-966
Kód UT WoS článku
000457713500001
EID výsledku v databázi Scopus
2-s2.0-85056729397