Anisotropy of Turbulent Flow Behind an Asymmetric Airfoil
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F21%3A00548974" target="_blank" >RIV/61388998:_____/21:00548974 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs42452-021-04872-2" target="_blank" >https://link.springer.com/article/10.1007%2Fs42452-021-04872-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s42452-021-04872-2" target="_blank" >10.1007/s42452-021-04872-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Anisotropy of Turbulent Flow Behind an Asymmetric Airfoil
Popis výsledku v původním jazyce
Feature of turbulent flow anisotropy behavior behind an asymmetric NACA 64-618 airfoil investigated in this paper. Experimental studies were performed using a hot-wire anemometery with X-probe at the chord-based Reynolds number 1.7×105. The average ensemble velocity and Reynolds stress components are used to determine the wake topology and anisotropy of turbulence. The obtained data allowed to identify the outside wake region, which is characterized by low instability and a high degree of anisotropy of the turbulent flow. This tendency is observed at different angles incident. Further, to gain better insight into the physics of this phenomenon the structure of turbulence have been evaluated. Integral turbulence length and time scales were estimated by the area of the autocorrelation function of velocity fluctuations. Then, using the second-order structural function, we obtained the dissipation characteristics of the flow. In addition, the features of the energy spectrum in the region with high and low degrees of turbulence anisotropy were analyzed.
Název v anglickém jazyce
Anisotropy of Turbulent Flow Behind an Asymmetric Airfoil
Popis výsledku anglicky
Feature of turbulent flow anisotropy behavior behind an asymmetric NACA 64-618 airfoil investigated in this paper. Experimental studies were performed using a hot-wire anemometery with X-probe at the chord-based Reynolds number 1.7×105. The average ensemble velocity and Reynolds stress components are used to determine the wake topology and anisotropy of turbulence. The obtained data allowed to identify the outside wake region, which is characterized by low instability and a high degree of anisotropy of the turbulent flow. This tendency is observed at different angles incident. Further, to gain better insight into the physics of this phenomenon the structure of turbulence have been evaluated. Integral turbulence length and time scales were estimated by the area of the autocorrelation function of velocity fluctuations. Then, using the second-order structural function, we obtained the dissipation characteristics of the flow. In addition, the features of the energy spectrum in the region with high and low degrees of turbulence anisotropy were analyzed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/TH02020057" target="_blank" >TH02020057: Profilové turbínové mříže pro supersonická proudová pole</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SN Applied Sciences
ISSN
2523-3963
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
885
Kód UT WoS článku
000722225200004
EID výsledku v databázi Scopus
2-s2.0-85119879397