Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Jarzynski equality on work and free energy: Crystal indentation as a case study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F22%3A00556230" target="_blank" >RIV/61388998:_____/22:00556230 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://aip.scitation.org/doi/10.1063/5.0071001" target="_blank" >https://aip.scitation.org/doi/10.1063/5.0071001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0071001" target="_blank" >10.1063/5.0071001</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Jarzynski equality on work and free energy: Crystal indentation as a case study

  • Popis výsledku v původním jazyce

    Mathematical relations concerning particle systems require knowledge of the applicability conditions to become physically relevant and not merely formal. We illustrate this fact through the analysis of the Jarzynski equality (JE), whose derivation for Hamiltonian systems suggests that the equilibrium free-energy variations can be computational or experimentally determined in almost any kind of non-equilibrium processes. This apparent generality is surprising in a mechanical theory. Analytically, we show that the quantity called “work” in the Hamiltonian derivation of the JE is neither a thermodynamic quantity nor mechanical work, except in special circumstances to be singularly assessed. Through molecular dynamics simulations of elastic and plastic deformations induced via nano-indentation of crystalline surfaces that fall within the formal framework of the JE, we illustrate that the JE cannot be verified and that the results of this verification are process dependent.

  • Název v anglickém jazyce

    Jarzynski equality on work and free energy: Crystal indentation as a case study

  • Popis výsledku anglicky

    Mathematical relations concerning particle systems require knowledge of the applicability conditions to become physically relevant and not merely formal. We illustrate this fact through the analysis of the Jarzynski equality (JE), whose derivation for Hamiltonian systems suggests that the equilibrium free-energy variations can be computational or experimentally determined in almost any kind of non-equilibrium processes. This apparent generality is surprising in a mechanical theory. Analytically, we show that the quantity called “work” in the Hamiltonian derivation of the JE is neither a thermodynamic quantity nor mechanical work, except in special circumstances to be singularly assessed. Through molecular dynamics simulations of elastic and plastic deformations induced via nano-indentation of crystalline surfaces that fall within the formal framework of the JE, we illustrate that the JE cannot be verified and that the results of this verification are process dependent.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10303 - Particles and field physics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EF15_003%2F0000493" target="_blank" >EF15_003/0000493: Centrum pro výzkum nelineárního dynamického chování pokročilých materiálů ve strojírenství (CeNDYNMAT)</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

    1089-7690

  • Svazek periodika

    156

  • Číslo periodika v rámci svazku

    11

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    114118

  • Kód UT WoS článku

    000779179000009

  • EID výsledku v databázi Scopus

    2-s2.0-85126860124