Fracture toughness of Fe-Si single crystals in mode I: Effect of loading rate on an edge crack (-110)[110] at macroscopic and atomistic level
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F22%3A00560649" target="_blank" >RIV/61388998:_____/22:00560649 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/22:00560649
Výsledek na webu
<a href="https://aip.scitation.org/doi/full/10.1063/5.0101626" target="_blank" >https://aip.scitation.org/doi/full/10.1063/5.0101626</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0101626" target="_blank" >10.1063/5.0101626</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fracture toughness of Fe-Si single crystals in mode I: Effect of loading rate on an edge crack (-110)[110] at macroscopic and atomistic level
Popis výsledku v původním jazyce
This paper is devoted to an experimental and 3D atomistic study of the influence of loading rate on fracture toughness in dilute Fe-Si alloys and in bcc iron. We analyze new and previous experimental results from fracture tests performed at room temperature on bcc ironsilicon single crystals with edge cracks (110) [110] (crack plane/crack front). The specimens of SEN (single edge notch) type were loaded in tension mode I under different loading rates. The ductile-brittle behavior at the crack front was monitored on-line via optical microscopy together with external force and prolongation of the specimens. About 30% decrease in fracture toughness was monitored in the new experiment under the highest loading rate. The nanoscopic processes produced by the crack itself were studied at room temperature via 3D molecular dynamic (MD) simulations in bcc iron under equivalent boundary conditions as in experiments to reveal (explain) the sensitivity of the crack to loading rate. For this purpose, this MD study utilizes the self-similar character of linear fracture mechanics. The results show that the emission of blunting dislocations from the crack is the most difficult under the highest loading rate, which leads to the reduced fracture toughness of the atomistic sample. This is in a qualitative agreement with the experimental (macro) results. Moreover, MD indicates that there may be some synenergetic (resonant) effect between the loading rate and thermal activation that promotes dislocation emission.
Název v anglickém jazyce
Fracture toughness of Fe-Si single crystals in mode I: Effect of loading rate on an edge crack (-110)[110] at macroscopic and atomistic level
Popis výsledku anglicky
This paper is devoted to an experimental and 3D atomistic study of the influence of loading rate on fracture toughness in dilute Fe-Si alloys and in bcc iron. We analyze new and previous experimental results from fracture tests performed at room temperature on bcc ironsilicon single crystals with edge cracks (110) [110] (crack plane/crack front). The specimens of SEN (single edge notch) type were loaded in tension mode I under different loading rates. The ductile-brittle behavior at the crack front was monitored on-line via optical microscopy together with external force and prolongation of the specimens. About 30% decrease in fracture toughness was monitored in the new experiment under the highest loading rate. The nanoscopic processes produced by the crack itself were studied at room temperature via 3D molecular dynamic (MD) simulations in bcc iron under equivalent boundary conditions as in experiments to reveal (explain) the sensitivity of the crack to loading rate. For this purpose, this MD study utilizes the self-similar character of linear fracture mechanics. The results show that the emission of blunting dislocations from the crack is the most difficult under the highest loading rate, which leads to the reduced fracture toughness of the atomistic sample. This is in a qualitative agreement with the experimental (macro) results. Moreover, MD indicates that there may be some synenergetic (resonant) effect between the loading rate and thermal activation that promotes dislocation emission.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Applied Physics
ISSN
0021-8979
e-ISSN
1089-7550
Svazek periodika
132
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
065107
Kód UT WoS článku
000839458400004
EID výsledku v databázi Scopus
2-s2.0-85136926691