Hybrid fictitious domain-immersed boundary method in CFD-based topology optimization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F22%3A00560839" target="_blank" >RIV/61388998:_____/22:00560839 - isvavai.cz</a>
Výsledek na webu
<a href="http://www2.it.cas.cz/fm2015/im/admin/showfile/data/my/Papers/2022/17-TPFM2022.pdf" target="_blank" >http://www2.it.cas.cz/fm2015/im/admin/showfile/data/my/Papers/2022/17-TPFM2022.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/TPFM.2022.017" target="_blank" >10.14311/TPFM.2022.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid fictitious domain-immersed boundary method in CFD-based topology optimization
Popis výsledku v původním jazyce
Advances in technological development, especially in 3D printing, allow engineers to design components with almost arbitrary shape and connectivity. Consequently, more and more attention is being directed towards a highly-specialized application-driven component design based on topology optimization (TO). In the present work, we propose a methodology enabling TO of components in contact with flowing fluids. In particular, the optimization itself is based on multi-objective evolutionary algorithms (MOEAs) with the component geometry encoded using a binary representation. The optimization criteria are evaluated via computational fluid dynamics (CFD). The main novelty of the proposed TO framework lies in its robustness and effectiveness achieved by utilizing a single computational mesh for all the tested designs and projecting the specific components shapes onto it by the means of an immersed boundary method. The new methodology capabilities are illustrated on a shape optimization of a diffuser equipped as a part of an ejector. The optimization goal was to increase the ejector energy efficiency. The newly proposed methodology was able to identify a design by roughly 9 % more efficient than an alternative one found utilizing a previously published and less general optimization approach.
Název v anglickém jazyce
Hybrid fictitious domain-immersed boundary method in CFD-based topology optimization
Popis výsledku anglicky
Advances in technological development, especially in 3D printing, allow engineers to design components with almost arbitrary shape and connectivity. Consequently, more and more attention is being directed towards a highly-specialized application-driven component design based on topology optimization (TO). In the present work, we propose a methodology enabling TO of components in contact with flowing fluids. In particular, the optimization itself is based on multi-objective evolutionary algorithms (MOEAs) with the component geometry encoded using a binary representation. The optimization criteria are evaluated via computational fluid dynamics (CFD). The main novelty of the proposed TO framework lies in its robustness and effectiveness achieved by utilizing a single computational mesh for all the tested designs and projecting the specific components shapes onto it by the means of an immersed boundary method. The new methodology capabilities are illustrated on a shape optimization of a diffuser equipped as a part of an ejector. The optimization goal was to increase the ejector energy efficiency. The newly proposed methodology was able to identify a design by roughly 9 % more efficient than an alternative one found utilizing a previously published and less general optimization approach.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000493" target="_blank" >EF15_003/0000493: Centrum pro výzkum nelineárního dynamického chování pokročilých materiálů ve strojírenství (CeNDYNMAT)</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Topical Problems of Fluid Mechanics 2022
ISBN
978-80-87012-77-2
ISSN
2336-5781
e-ISSN
—
Počet stran výsledku
8
Strana od-do
119-126
Název nakladatele
Ústav termomechaniky AV ČR, v. v. i.
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
16. 2. 2022
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
001235659500017