Explicit asynchronous time scheme with local push-forward stepping for discontinuous elastic wave propagation: One-dimensional heterogeneous cases and Hopkinson bar experiment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F23%3A00573529" target="_blank" >RIV/61388998:_____/23:00573529 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21260/23:00366612
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165212523000550?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165212523000550?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.wavemoti.2023.103169" target="_blank" >10.1016/j.wavemoti.2023.103169</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Explicit asynchronous time scheme with local push-forward stepping for discontinuous elastic wave propagation: One-dimensional heterogeneous cases and Hopkinson bar experiment
Popis výsledku v původním jazyce
This is a presentation of robust and accurate explicit time-stepping strategy for finite element modeling of elastic discontinuous wave propagation in strongly heterogeneous, multi-material and graded one-dimensional media. One of the major issues in FEM modeling is the existence of spurious numerical stress oscillations close to theoretical wave fronts due to temporal-spatial dispersion behavior of FE discretization. The numerical strategy presented for modeling of 1D discontinuous elastic waves is based on (a) pushforward-pullback local stepping — ensuring the elimination of dispersion due to different critical time step sizes of finite elements, (b) domain decomposition via localized Lagrange multipliers — to satisfy coupling kinematics and dynamic equations , (c) asynchronous time scheme — ensuring the correct information transfer of quantities for the case of integer ratios of time step size for all domain pairs. Dispersion behaviors, existence of spurious stress oscillations, and sensitivity of the dispersion to time step size are then suppressed. The proposed method is numerically tested with regard to the rectangular step pulse elastic propagation problem considering in-space varying Young’s modulus. To prove robustness and accuracy, a comparison with results from commercial software, an analytical solution, and experimental data from partial assembly of a split Hopkinson pressure bar (SHPB) setup is provided.
Název v anglickém jazyce
Explicit asynchronous time scheme with local push-forward stepping for discontinuous elastic wave propagation: One-dimensional heterogeneous cases and Hopkinson bar experiment
Popis výsledku anglicky
This is a presentation of robust and accurate explicit time-stepping strategy for finite element modeling of elastic discontinuous wave propagation in strongly heterogeneous, multi-material and graded one-dimensional media. One of the major issues in FEM modeling is the existence of spurious numerical stress oscillations close to theoretical wave fronts due to temporal-spatial dispersion behavior of FE discretization. The numerical strategy presented for modeling of 1D discontinuous elastic waves is based on (a) pushforward-pullback local stepping — ensuring the elimination of dispersion due to different critical time step sizes of finite elements, (b) domain decomposition via localized Lagrange multipliers — to satisfy coupling kinematics and dynamic equations , (c) asynchronous time scheme — ensuring the correct information transfer of quantities for the case of integer ratios of time step size for all domain pairs. Dispersion behaviors, existence of spurious stress oscillations, and sensitivity of the dispersion to time step size are then suppressed. The proposed method is numerically tested with regard to the rectangular step pulse elastic propagation problem considering in-space varying Young’s modulus. To prove robustness and accuracy, a comparison with results from commercial software, an analytical solution, and experimental data from partial assembly of a split Hopkinson pressure bar (SHPB) setup is provided.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF22-00863K" target="_blank" >GF22-00863K: Řiditelné metamateriály a chytré struktury: Nelineární problémy, modelování a experimenty</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Wave Motion
ISSN
0165-2125
e-ISSN
1878-433X
Svazek periodika
121
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
26
Strana od-do
103169
Kód UT WoS článku
001018343700001
EID výsledku v databázi Scopus
2-s2.0-85161263007