Molecular simulations of transport properties of polar hydrofluoroethers: Force field development, fractional Stokes-Einstein and free volume relations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F23%3A00574386" target="_blank" >RIV/61388998:_____/23:00574386 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0167732223016525?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167732223016525?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.molliq.2023.122847" target="_blank" >10.1016/j.molliq.2023.122847</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Molecular simulations of transport properties of polar hydrofluoroethers: Force field development, fractional Stokes-Einstein and free volume relations
Popis výsledku v původním jazyce
Hydrofluoroethers (HFEs) having simultaneously hydrocarbon (HC) and fluorocarbon (FC) moieties connected through ether oxygen are polar chain molecules with dielectric properties, which makes them a good heat transfer medium, e.g., for cooling of electronics or magnetic devices. In this work, we report, validate, and test high level-ab initio derived force fields and we use partial charges fitted to the electrostatic potential surface (EPS) to reproduce the dipole moments. Computer simulations were performed over a wide range of temperatures and densities to calculate the transport coefficients in the condensed-phase and comparisons were made against available experimental data for five selected molecules, namely HFE-7000, HFE-7100, HFE −7200, HFE −7300, and HFE −7500. Furthermore, structural properties and enthalpy of vaporization were obtained from molecular simulations. Cohen and Turnbull formula for the translational self-diffusion coefficient was tested in the free-volume cast, which itself was correlated against the isothermal compressibility, which can explain the phenomenon of transport properties in liquids, D∝exp-γ/Vf/V∗. The fractional Stokes-Einstein relation was also tested to scale the self-diffusion coefficient vs viscosity in the form of (DT−1) ∝ (1/η)s, with s ranging between ≈ 0.89 and 0.92 for the five molecules in the reduced density range of ρσ3 = 0.56 to 0.75. Finally, the non-equilibrium molecular dynamics (NEMD) simulations of thermal conductivity was found to outperform the equilibrium Green-Kubo approach, but both with comparable accuracy.
Název v anglickém jazyce
Molecular simulations of transport properties of polar hydrofluoroethers: Force field development, fractional Stokes-Einstein and free volume relations
Popis výsledku anglicky
Hydrofluoroethers (HFEs) having simultaneously hydrocarbon (HC) and fluorocarbon (FC) moieties connected through ether oxygen are polar chain molecules with dielectric properties, which makes them a good heat transfer medium, e.g., for cooling of electronics or magnetic devices. In this work, we report, validate, and test high level-ab initio derived force fields and we use partial charges fitted to the electrostatic potential surface (EPS) to reproduce the dipole moments. Computer simulations were performed over a wide range of temperatures and densities to calculate the transport coefficients in the condensed-phase and comparisons were made against available experimental data for five selected molecules, namely HFE-7000, HFE-7100, HFE −7200, HFE −7300, and HFE −7500. Furthermore, structural properties and enthalpy of vaporization were obtained from molecular simulations. Cohen and Turnbull formula for the translational self-diffusion coefficient was tested in the free-volume cast, which itself was correlated against the isothermal compressibility, which can explain the phenomenon of transport properties in liquids, D∝exp-γ/Vf/V∗. The fractional Stokes-Einstein relation was also tested to scale the self-diffusion coefficient vs viscosity in the form of (DT−1) ∝ (1/η)s, with s ranging between ≈ 0.89 and 0.92 for the five molecules in the reduced density range of ρσ3 = 0.56 to 0.75. Finally, the non-equilibrium molecular dynamics (NEMD) simulations of thermal conductivity was found to outperform the equilibrium Green-Kubo approach, but both with comparable accuracy.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20303 - Thermodynamics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-03380S" target="_blank" >GA22-03380S: Vodné směsi se solemi při extrémních podmínkách - přesné experimenty, molekulární simulace a modelování</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Molecular Liquids
ISSN
0167-7322
e-ISSN
1873-3166
Svazek periodika
389
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
122847
Kód UT WoS článku
001088428600001
EID výsledku v databázi Scopus
2-s2.0-85168408146