A General Model for Thermodynamic Properties of Fluid Mixtures Based on Helmholtz Energy Formulations for the Components. Virial Expansion and Reduction to van der Waals nMixing Rules
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F23%3A00577496" target="_blank" >RIV/61388998:_____/23:00577496 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s10765-023-03237-8" target="_blank" >https://link.springer.com/article/10.1007/s10765-023-03237-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10765-023-03237-8" target="_blank" >10.1007/s10765-023-03237-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A General Model for Thermodynamic Properties of Fluid Mixtures Based on Helmholtz Energy Formulations for the Components. Virial Expansion and Reduction to van der Waals nMixing Rules
Popis výsledku v původním jazyce
Over the recent decades, Helmholtz energy formulations became available for a broad range of fluids. These multiparameter equations of state (R. Span, Springer 2000) allow computation of thermodynamic properties essentially within the experimental errorbars. Corresponding states-based model by Lemmon and Tillner-Roth (Fluid Phase Equilib 165:1, 1999) enabled construction of Helmholtz energy formulations for mixtures. However, we show that this model generates a non-physical dependence of virial coefficients on composition, which can be strong when the components are dissimilar. We propose a new mixture model that overcomes this deficiency. It has two main ingredients: (i) Quadratic mixing of 'Helmholtz volumities'. This quantity with units of molar volume is introduced as a ratio of the molar residual Helmholtz energy to a product of gas constant, thermodynamic temperature, and molar density. It reduces to the second virial coefficient in the zero-density limit. Helmholtz volumities are considered for components and 'cross-components', hypothetical fluids representing the binary interactions. (ii) Replacing the variables-reduced reciprocal temperatures and reduced densities-with temperature and density scaling functions. Different scaling functions can be used for different components and cross-components, thus providing a highly flexible framework for representing the properties of mixtures. The scaling functions must be expandable into Taylor series in terms of molar concentrations in the zero-density limit. For the proposed mixture model, we develop formulas for computing virial coefficients up to the fourth order. Furthermore, we show that when the proposed mixture model is applied to a cubic equation of state, the conventional van der Waals mixing rules can be retrieved. These findings allow to consider the new model as a viable alternative to the corresponding states method of modeling thermodynamic properties of fluid mixtures.
Název v anglickém jazyce
A General Model for Thermodynamic Properties of Fluid Mixtures Based on Helmholtz Energy Formulations for the Components. Virial Expansion and Reduction to van der Waals nMixing Rules
Popis výsledku anglicky
Over the recent decades, Helmholtz energy formulations became available for a broad range of fluids. These multiparameter equations of state (R. Span, Springer 2000) allow computation of thermodynamic properties essentially within the experimental errorbars. Corresponding states-based model by Lemmon and Tillner-Roth (Fluid Phase Equilib 165:1, 1999) enabled construction of Helmholtz energy formulations for mixtures. However, we show that this model generates a non-physical dependence of virial coefficients on composition, which can be strong when the components are dissimilar. We propose a new mixture model that overcomes this deficiency. It has two main ingredients: (i) Quadratic mixing of 'Helmholtz volumities'. This quantity with units of molar volume is introduced as a ratio of the molar residual Helmholtz energy to a product of gas constant, thermodynamic temperature, and molar density. It reduces to the second virial coefficient in the zero-density limit. Helmholtz volumities are considered for components and 'cross-components', hypothetical fluids representing the binary interactions. (ii) Replacing the variables-reduced reciprocal temperatures and reduced densities-with temperature and density scaling functions. Different scaling functions can be used for different components and cross-components, thus providing a highly flexible framework for representing the properties of mixtures. The scaling functions must be expandable into Taylor series in terms of molar concentrations in the zero-density limit. For the proposed mixture model, we develop formulas for computing virial coefficients up to the fourth order. Furthermore, we show that when the proposed mixture model is applied to a cubic equation of state, the conventional van der Waals mixing rules can be retrieved. These findings allow to consider the new model as a viable alternative to the corresponding states method of modeling thermodynamic properties of fluid mixtures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-03380S" target="_blank" >GA22-03380S: Vodné směsi se solemi při extrémních podmínkách - přesné experimenty, molekulární simulace a modelování</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Thermophysics
ISSN
0195-928X
e-ISSN
1572-9567
Svazek periodika
44
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
37
Strana od-do
130
Kód UT WoS článku
001040417300001
EID výsledku v databázi Scopus
2-s2.0-85166321464