Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Stefan problem in a thermomechanical context with fracture and fluid flow

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F23%3A00579760" target="_blank" >RIV/61388998:_____/23:00579760 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11320/23:10474100

  • Výsledek na webu

    <a href="https://onlinelibrary.wiley.com/doi/10.1002/mma.8684" target="_blank" >https://onlinelibrary.wiley.com/doi/10.1002/mma.8684</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mma.8684" target="_blank" >10.1002/mma.8684</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Stefan problem in a thermomechanical context with fracture and fluid flow

  • Popis výsledku v původním jazyce

    The classical Stefan problem, concerning mere heat-transfer during solid-liquid phase transition, is here enhanced towards mechanical effects. The Eulerian description at large displacements is used with convective and Zaremba-Jaumann corotational time derivatives, linearized by using the additive Green-Naghdi's decomposition in (objective) rates. In particular, the liquid phase is a viscoelastic fluid while creep and rupture of the solid phase is considered in the Jeffreys viscoelastic rheology exploiting the phase-field model and a concept of slightly (so-called semi) compressible materials. The L-1-theory for the heat equation is adopted for the Stefan problem relaxed by allowing for kinetic superheating/supercooling effects during the solid-liquid phase transition. A rigorous proof of existence of weak solutions is provided for an incomplete melting, employing a time discretization approximation.

  • Název v anglickém jazyce

    The Stefan problem in a thermomechanical context with fracture and fluid flow

  • Popis výsledku anglicky

    The classical Stefan problem, concerning mere heat-transfer during solid-liquid phase transition, is here enhanced towards mechanical effects. The Eulerian description at large displacements is used with convective and Zaremba-Jaumann corotational time derivatives, linearized by using the additive Green-Naghdi's decomposition in (objective) rates. In particular, the liquid phase is a viscoelastic fluid while creep and rupture of the solid phase is considered in the Jeffreys viscoelastic rheology exploiting the phase-field model and a concept of slightly (so-called semi) compressible materials. The L-1-theory for the heat equation is adopted for the Stefan problem relaxed by allowing for kinetic superheating/supercooling effects during the solid-liquid phase transition. A rigorous proof of existence of weak solutions is provided for an incomplete melting, employing a time discretization approximation.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematical Methods in the Applied Sciences

  • ISSN

    0170-4214

  • e-ISSN

    1099-1476

  • Svazek periodika

    46

  • Číslo periodika v rámci svazku

    12

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    29

  • Strana od-do

    12217-12245

  • Kód UT WoS článku

    000967855900001

  • EID výsledku v databázi Scopus

    2-s2.0-85152357611