Modelling of planetary accretion and core-mantle structure formation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61388998%3A_____%2F24%3A00600224" target="_blank" >RIV/61388998:_____/24:00600224 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/24:10490382
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1751-8121/ad75d9#artAbst" target="_blank" >https://iopscience.iop.org/article/10.1088/1751-8121/ad75d9#artAbst</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/ad75d9" target="_blank" >10.1088/1751-8121/ad75d9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling of planetary accretion and core-mantle structure formation
Popis výsledku v původním jazyce
We advance a thermodynamically consistent model of self-gravitational accretion and differentiation in planets. The system is modeled in actual variables as a compressible thermoviscoelastic fluid in a fixed, sufficiently large domain. The supply of material to the accreting and differentiating system is described as a bulk source of mass, volume, impulse, and energy localized in some border region of the domain. Mass, momentum, and energy conservation, along with constitutive relations, result in an extended compressible Navier–Stokes-Fourier-Poisson system. The centrifugal and Coriolis forces are also considered. After studying some single-component setting, we consider a two-component situation, where metals and silicates mix and differentiate under gravity, eventually forming a core-mantle structure. The energetics of the models are elucidated. Moreover, we prove that the models are stable, in that self-gravitational collapse is excluded. Eventually, we comment on the prospects of devising a rigorous mathematical approximation and existence theory.
Název v anglickém jazyce
Modelling of planetary accretion and core-mantle structure formation
Popis výsledku anglicky
We advance a thermodynamically consistent model of self-gravitational accretion and differentiation in planets. The system is modeled in actual variables as a compressible thermoviscoelastic fluid in a fixed, sufficiently large domain. The supply of material to the accreting and differentiating system is described as a bulk source of mass, volume, impulse, and energy localized in some border region of the domain. Mass, momentum, and energy conservation, along with constitutive relations, result in an extended compressible Navier–Stokes-Fourier-Poisson system. The centrifugal and Coriolis forces are also considered. After studying some single-component setting, we consider a two-component situation, where metals and silicates mix and differentiate under gravity, eventually forming a core-mantle structure. The energetics of the models are elucidated. Moreover, we prove that the models are stable, in that self-gravitational collapse is excluded. Eventually, we comment on the prospects of devising a rigorous mathematical approximation and existence theory.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10308 - Astronomy (including astrophysics,space science)
Návaznosti výsledku
Projekt
<a href="/cs/project/GC23-04676J" target="_blank" >GC23-04676J: Řiditelná úchopová mechanika: Modelování, řízení a experimenty</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics A-Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Svazek periodika
57
Číslo periodika v rámci svazku
45
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
455701
Kód UT WoS článku
001342255900001
EID výsledku v databázi Scopus
2-s2.0-85208380624