Applications of the potential algebras of the two-dimensional Dirac-like operators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F13%3A00392303" target="_blank" >RIV/61389005:_____/13:00392303 - isvavai.cz</a>
Výsledek na webu
<a href="http://ac.els-cdn.com/S0003491613000080/1-s2.0-S0003491613000080-main.pdf?_tid=e9c316f0-bbe7-11e2-b8ca-00000aab0f6c&acdnat=1368461731_fb8fe2f5da71ade23877f1a9bcddd89f" target="_blank" >http://ac.els-cdn.com/S0003491613000080/1-s2.0-S0003491613000080-main.pdf?_tid=e9c316f0-bbe7-11e2-b8ca-00000aab0f6c&acdnat=1368461731_fb8fe2f5da71ade23877f1a9bcddd89f</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aop.2013.01.004" target="_blank" >10.1016/j.aop.2013.01.004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Applications of the potential algebras of the two-dimensional Dirac-like operators
Popis výsledku v původním jazyce
Potential algebras can be used effectively in the analysis of the quantum systems. In the article, we focus on the systems described by a separable, 2 x 2 matrix Hamiltonian of the first order in derivatives. We find integrals of motion of the Hamiltonian that close, centrally extended so(3), so(2, 1) or oscillator algebra. The algebraic framework is used in construction of physically interesting solvable models described by the (2 + 1) dimensional Dirac equation. It is applied in description of open-cage fullerenes where the energies and wave functions of low-energy charge-carriers are computed. The potential algebras are also used in construction of shape-invariant, one-dimensional Dirac operators. We show that shape-invariance of the first-order operators is associated with the N = 4 nonlinear supersymmetry which is represented by both local and nonlocal supercharges. The relation to the shape-invariant non-relativistic systems is discussed as well.
Název v anglickém jazyce
Applications of the potential algebras of the two-dimensional Dirac-like operators
Popis výsledku anglicky
Potential algebras can be used effectively in the analysis of the quantum systems. In the article, we focus on the systems described by a separable, 2 x 2 matrix Hamiltonian of the first order in derivatives. We find integrals of motion of the Hamiltonian that close, centrally extended so(3), so(2, 1) or oscillator algebra. The algebraic framework is used in construction of physically interesting solvable models described by the (2 + 1) dimensional Dirac equation. It is applied in description of open-cage fullerenes where the energies and wave functions of low-energy charge-carriers are computed. The potential algebras are also used in construction of shape-invariant, one-dimensional Dirac operators. We show that shape-invariance of the first-order operators is associated with the N = 4 nonlinear supersymmetry which is represented by both local and nonlocal supercharges. The relation to the shape-invariant non-relativistic systems is discussed as well.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BE - Teoretická fyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GPP203%2F11%2FP038" target="_blank" >GPP203/11/P038: Skryté nelineární symetrie a supersymetrie v kvantových systémech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annals of Physics
ISSN
0003-4916
e-ISSN
—
Svazek periodika
331
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
216-235
Kód UT WoS článku
000316089700013
EID výsledku v databázi Scopus
—