Radiation environment onboard spacecraft at LEO and in deep space
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00486343" target="_blank" >RIV/61389005:_____/16:00486343 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/AERO.2016.7500765" target="_blank" >http://dx.doi.org/10.1109/AERO.2016.7500765</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/AERO.2016.7500765" target="_blank" >10.1109/AERO.2016.7500765</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Radiation environment onboard spacecraft at LEO and in deep space
Popis výsledku v původním jazyce
It is well known that outside the Earth's protective atmosphere and magnetosphere, the environment is very harsh and unfriendly for any living organism, due to the micro gravity, lack of oxygen and protection from high energetic ionizing cosmic radiation, as well as from powerful solar energetic particles (SEPs). The space radiation exposure leads to increased health risks, including tumor lethality, circulatory diseases and damages on the central nervous systems. In case of SEP events, exposures of spacecraft crews may be lethal. Space radiation hazards are therefore recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a limiting factor since current protection limits might be approached or even exceeded. Better risk assessment requires knowledge of the radiation quality, as well as equivalent doses in critical radiosensitive organs, and different risk coefficient for different radiation caused illnesses and diseases must be developed. The use of human phantoms, simulating an astronaut's body, provides detailed information of the depth-dose distributions, and radiation quality, inside the human body. In this paper we will therefore review the major phantom experiments performed at Low Earth Orbits (LEO) [1]. However, the radiation environment in deep space is different from LEO. Based on fundamental physics principles, it is clear that hydrogen rich, light and neutron deficient materials have the best shielding properties against Galactic Cosmic Rays (GCR) [2,3]. It has also been shown [4,5] that water shielding material can reduce the dose from Trapped Particles (TP), the low energetic part of GCR, and from low energetic SEP events.
Název v anglickém jazyce
Radiation environment onboard spacecraft at LEO and in deep space
Popis výsledku anglicky
It is well known that outside the Earth's protective atmosphere and magnetosphere, the environment is very harsh and unfriendly for any living organism, due to the micro gravity, lack of oxygen and protection from high energetic ionizing cosmic radiation, as well as from powerful solar energetic particles (SEPs). The space radiation exposure leads to increased health risks, including tumor lethality, circulatory diseases and damages on the central nervous systems. In case of SEP events, exposures of spacecraft crews may be lethal. Space radiation hazards are therefore recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a limiting factor since current protection limits might be approached or even exceeded. Better risk assessment requires knowledge of the radiation quality, as well as equivalent doses in critical radiosensitive organs, and different risk coefficient for different radiation caused illnesses and diseases must be developed. The use of human phantoms, simulating an astronaut's body, provides detailed information of the depth-dose distributions, and radiation quality, inside the human body. In this paper we will therefore review the major phantom experiments performed at Low Earth Orbits (LEO) [1]. However, the radiation environment in deep space is different from LEO. Based on fundamental physics principles, it is clear that hydrogen rich, light and neutron deficient materials have the best shielding properties against Galactic Cosmic Rays (GCR) [2,3]. It has also been shown [4,5] that water shielding material can reduce the dose from Trapped Particles (TP), the low energetic part of GCR, and from low energetic SEP events.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20304 - Aerospace engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE Aerospace Conference Proceedings
ISBN
978-1-4673-7676-1
ISSN
1095-323X
e-ISSN
—
Počet stran výsledku
9
Strana od-do
—
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Big Sky
Datum konání akce
5. 3. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000388374902081