Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Radiation environment onboard spacecraft at LEO and in deep space

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F16%3A00486343" target="_blank" >RIV/61389005:_____/16:00486343 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1109/AERO.2016.7500765" target="_blank" >http://dx.doi.org/10.1109/AERO.2016.7500765</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/AERO.2016.7500765" target="_blank" >10.1109/AERO.2016.7500765</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Radiation environment onboard spacecraft at LEO and in deep space

  • Popis výsledku v původním jazyce

    It is well known that outside the Earth's protective atmosphere and magnetosphere, the environment is very harsh and unfriendly for any living organism, due to the micro gravity, lack of oxygen and protection from high energetic ionizing cosmic radiation, as well as from powerful solar energetic particles (SEPs). The space radiation exposure leads to increased health risks, including tumor lethality, circulatory diseases and damages on the central nervous systems. In case of SEP events, exposures of spacecraft crews may be lethal. Space radiation hazards are therefore recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a limiting factor since current protection limits might be approached or even exceeded. Better risk assessment requires knowledge of the radiation quality, as well as equivalent doses in critical radiosensitive organs, and different risk coefficient for different radiation caused illnesses and diseases must be developed. The use of human phantoms, simulating an astronaut's body, provides detailed information of the depth-dose distributions, and radiation quality, inside the human body. In this paper we will therefore review the major phantom experiments performed at Low Earth Orbits (LEO) [1]. However, the radiation environment in deep space is different from LEO. Based on fundamental physics principles, it is clear that hydrogen rich, light and neutron deficient materials have the best shielding properties against Galactic Cosmic Rays (GCR) [2,3]. It has also been shown [4,5] that water shielding material can reduce the dose from Trapped Particles (TP), the low energetic part of GCR, and from low energetic SEP events.

  • Název v anglickém jazyce

    Radiation environment onboard spacecraft at LEO and in deep space

  • Popis výsledku anglicky

    It is well known that outside the Earth's protective atmosphere and magnetosphere, the environment is very harsh and unfriendly for any living organism, due to the micro gravity, lack of oxygen and protection from high energetic ionizing cosmic radiation, as well as from powerful solar energetic particles (SEPs). The space radiation exposure leads to increased health risks, including tumor lethality, circulatory diseases and damages on the central nervous systems. In case of SEP events, exposures of spacecraft crews may be lethal. Space radiation hazards are therefore recognized as a key concern for human space flight. For long-term interplanetary missions, they constitute a limiting factor since current protection limits might be approached or even exceeded. Better risk assessment requires knowledge of the radiation quality, as well as equivalent doses in critical radiosensitive organs, and different risk coefficient for different radiation caused illnesses and diseases must be developed. The use of human phantoms, simulating an astronaut's body, provides detailed information of the depth-dose distributions, and radiation quality, inside the human body. In this paper we will therefore review the major phantom experiments performed at Low Earth Orbits (LEO) [1]. However, the radiation environment in deep space is different from LEO. Based on fundamental physics principles, it is clear that hydrogen rich, light and neutron deficient materials have the best shielding properties against Galactic Cosmic Rays (GCR) [2,3]. It has also been shown [4,5] that water shielding material can reduce the dose from Trapped Particles (TP), the low energetic part of GCR, and from low energetic SEP events.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20304 - Aerospace engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    IEEE Aerospace Conference Proceedings

  • ISBN

    978-1-4673-7676-1

  • ISSN

    1095-323X

  • e-ISSN

  • Počet stran výsledku

    9

  • Strana od-do

  • Název nakladatele

    IEEE

  • Místo vydání

    New York

  • Místo konání akce

    Big Sky

  • Datum konání akce

    5. 3. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000388374902081