Quantifying uncertainties in nuclear matrix elements for dark matter searches
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F19%3A00517689" target="_blank" >RIV/61389005:_____/19:00517689 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1063/1.5130969" target="_blank" >http://dx.doi.org/10.1063/1.5130969</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.5130969" target="_blank" >10.1063/1.5130969</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Quantifying uncertainties in nuclear matrix elements for dark matter searches
Popis výsledku v původním jazyce
In this contribution we report on quantification of theoretical uncertainties in nuclear matrix elements relevant for modeling dark matter and electro-weak interactions with nuclei. Recently we have developed a novel ab initio framework for computations of nuclear matrix elements and applied it in calculations of reaction rates for dark matter particles scattering off selected nuclear targets [1]. To evaluate the nuclear matrix elements we used nuclear wave functions computed within an ab initio many-body framework employing state-of-the-art nuclear Hamiltonians derived from chiral effective field theory. For the first time we have quantified the nuclear-physics uncertainties of the matrix elements that result from the remaining freedom in the construction of realistic nuclear interactions and their impact on physical observables. We found significant uncertainties especially for certain spin-dependent nuclear matrix elements. While our nuclear structure calculations have been performed with the no-core shell model method and applied in the context of dark matter searches, the approach can be generalized to other ab initio methods and extended to other sectors.
Název v anglickém jazyce
Quantifying uncertainties in nuclear matrix elements for dark matter searches
Popis výsledku anglicky
In this contribution we report on quantification of theoretical uncertainties in nuclear matrix elements relevant for modeling dark matter and electro-weak interactions with nuclei. Recently we have developed a novel ab initio framework for computations of nuclear matrix elements and applied it in calculations of reaction rates for dark matter particles scattering off selected nuclear targets [1]. To evaluate the nuclear matrix elements we used nuclear wave functions computed within an ab initio many-body framework employing state-of-the-art nuclear Hamiltonians derived from chiral effective field theory. For the first time we have quantified the nuclear-physics uncertainties of the matrix elements that result from the remaining freedom in the construction of realistic nuclear interactions and their impact on physical observables. We found significant uncertainties especially for certain spin-dependent nuclear matrix elements. While our nuclear structure calculations have been performed with the no-core shell model method and applied in the context of dark matter searches, the approach can be generalized to other ab initio methods and extended to other sectors.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
AIP Conference Proceedings
ISBN
978-0-7354-1910-0
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
020008
Název nakladatele
American Institute of Physics Inc.
Místo vydání
Melville
Místo konání akce
Praha
Datum konání akce
27. 5. 2019
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—