Target normal sheath ion acceleration by fs laser irradiating metal/reduced graphene oxide targets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F20%3A00524204" target="_blank" >RIV/61389005:_____/20:00524204 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1088/1748-0221/15/03/C03056" target="_blank" >https://doi.org/10.1088/1748-0221/15/03/C03056</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1748-0221/15/03/C03056" target="_blank" >10.1088/1748-0221/15/03/C03056</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Target normal sheath ion acceleration by fs laser irradiating metal/reduced graphene oxide targets
Popis výsledku v původním jazyce
Target normal sheath ion acceleration is applied with a high contrast fs laser irradiating advanced targets based on thin metallic films (Al, Cu, Ag and Au) covering micrometric foils of reduced graphene oxide (rGO). The laser intensity is of about 10(18) W/cm(2) and the laser focal position with respect to the target surface is optimized to have the maximum proton acceleration. Plasma diagnostics are investigated using time-of-flight technique employing SiC detectors, ion collectors, and gaf-chromic films. Micrometric aluminum absorbers were employed to separate the faster proton detection by other accelerated ions. At the optimized laser focal position, the maximum proton acceleration of 2.5MeV and 3.0 MeV energy was obtained using Ag(200 nm) and Au(200 nm) covering rGO(7 mu m) targets, respectively. The high proton energy is due to the high electrical and thermal conductivity and high mechanical resistance of the used rGO foils and to the high plasma electron density of the target.
Název v anglickém jazyce
Target normal sheath ion acceleration by fs laser irradiating metal/reduced graphene oxide targets
Popis výsledku anglicky
Target normal sheath ion acceleration is applied with a high contrast fs laser irradiating advanced targets based on thin metallic films (Al, Cu, Ag and Au) covering micrometric foils of reduced graphene oxide (rGO). The laser intensity is of about 10(18) W/cm(2) and the laser focal position with respect to the target surface is optimized to have the maximum proton acceleration. Plasma diagnostics are investigated using time-of-flight technique employing SiC detectors, ion collectors, and gaf-chromic films. Micrometric aluminum absorbers were employed to separate the faster proton detection by other accelerated ions. At the optimized laser focal position, the maximum proton acceleration of 2.5MeV and 3.0 MeV energy was obtained using Ag(200 nm) and Au(200 nm) covering rGO(7 mu m) targets, respectively. The high proton energy is due to the high electrical and thermal conductivity and high mechanical resistance of the used rGO foils and to the high plasma electron density of the target.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Instrumentation
ISSN
1748-0221
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
15
Strana od-do
C03056
Kód UT WoS článku
000528039600056
EID výsledku v databázi Scopus
2-s2.0-85084189924