Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Machine learning approach to pattern recognition in nuclear dynamics from the ab initio symmetry-adapted no-core shell model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00556226" target="_blank" >RIV/61389005:_____/22:00556226 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1103/PhysRevC.105.034306" target="_blank" >https://doi.org/10.1103/PhysRevC.105.034306</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1103/PhysRevC.105.034306" target="_blank" >10.1103/PhysRevC.105.034306</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Machine learning approach to pattern recognition in nuclear dynamics from the ab initio symmetry-adapted no-core shell model

  • Popis výsledku v původním jazyce

    A novel machine learning approach is used to provide further insight into atomic nuclei and to detect orderly patterns amid a vast data of large-scale calculations. The method utilizes a neural network that is trained on ab initio results from the symmetry-adapted no-core shell model (SA-NCSM) for light nuclei. We show that the SA-NCSM, which expands ab initio applications up to medium-mass nuclei by using dominant symmetries of nuclear dynamics, can reach heavier nuclei when coupled with the machine learning approach. In particular, we find that a neural network trained on probability amplitudes for s- and p-shell nuclear wave functions not only predicts dominant configurations for heavier nuclei but in addition, when tested for the Ne-20 ground state, accurately reproduces the probability distribution. The non-negligible configurations predicted by the network provide an important input to the SA-NCSM for reducing ultralarge model spaces to manageable sizes that can be, in turn, utilized in SA-NCSM calculations to obtain accurate observables. The neural network is capable of describing nuclear deformation and is used to track the shape evolution along the Mg20-42 isotopic chain, suggesting a shape coexistence that is more pronounced toward the very neutron-rich isotopes. We provide first descriptions of the structure and deformation of Si-24 and Mg-40 of interest to x-ray burst nucleosynthesis, and even of the extremely heavy nuclei such as Er-166,Er-168 and U-236, that build on first-principles considerations.

  • Název v anglickém jazyce

    Machine learning approach to pattern recognition in nuclear dynamics from the ab initio symmetry-adapted no-core shell model

  • Popis výsledku anglicky

    A novel machine learning approach is used to provide further insight into atomic nuclei and to detect orderly patterns amid a vast data of large-scale calculations. The method utilizes a neural network that is trained on ab initio results from the symmetry-adapted no-core shell model (SA-NCSM) for light nuclei. We show that the SA-NCSM, which expands ab initio applications up to medium-mass nuclei by using dominant symmetries of nuclear dynamics, can reach heavier nuclei when coupled with the machine learning approach. In particular, we find that a neural network trained on probability amplitudes for s- and p-shell nuclear wave functions not only predicts dominant configurations for heavier nuclei but in addition, when tested for the Ne-20 ground state, accurately reproduces the probability distribution. The non-negligible configurations predicted by the network provide an important input to the SA-NCSM for reducing ultralarge model spaces to manageable sizes that can be, in turn, utilized in SA-NCSM calculations to obtain accurate observables. The neural network is capable of describing nuclear deformation and is used to track the shape evolution along the Mg20-42 isotopic chain, suggesting a shape coexistence that is more pronounced toward the very neutron-rich isotopes. We provide first descriptions of the structure and deformation of Si-24 and Mg-40 of interest to x-ray burst nucleosynthesis, and even of the extremely heavy nuclei such as Er-166,Er-168 and U-236, that build on first-principles considerations.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10304 - Nuclear physics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA22-14497S" target="_blank" >GA22-14497S: Posouvání hranic ab initio výpočtů jaderné struktury</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Physical Review C

  • ISSN

    2469-9985

  • e-ISSN

    2469-9993

  • Svazek periodika

    105

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    034306

  • Kód UT WoS článku

    000767144000001

  • EID výsledku v databázi Scopus

    2-s2.0-85126700632