Machine learning approach to pattern recognition in nuclear dynamics from the ab initio symmetry-adapted no-core shell model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00556226" target="_blank" >RIV/61389005:_____/22:00556226 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevC.105.034306" target="_blank" >https://doi.org/10.1103/PhysRevC.105.034306</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevC.105.034306" target="_blank" >10.1103/PhysRevC.105.034306</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine learning approach to pattern recognition in nuclear dynamics from the ab initio symmetry-adapted no-core shell model
Popis výsledku v původním jazyce
A novel machine learning approach is used to provide further insight into atomic nuclei and to detect orderly patterns amid a vast data of large-scale calculations. The method utilizes a neural network that is trained on ab initio results from the symmetry-adapted no-core shell model (SA-NCSM) for light nuclei. We show that the SA-NCSM, which expands ab initio applications up to medium-mass nuclei by using dominant symmetries of nuclear dynamics, can reach heavier nuclei when coupled with the machine learning approach. In particular, we find that a neural network trained on probability amplitudes for s- and p-shell nuclear wave functions not only predicts dominant configurations for heavier nuclei but in addition, when tested for the Ne-20 ground state, accurately reproduces the probability distribution. The non-negligible configurations predicted by the network provide an important input to the SA-NCSM for reducing ultralarge model spaces to manageable sizes that can be, in turn, utilized in SA-NCSM calculations to obtain accurate observables. The neural network is capable of describing nuclear deformation and is used to track the shape evolution along the Mg20-42 isotopic chain, suggesting a shape coexistence that is more pronounced toward the very neutron-rich isotopes. We provide first descriptions of the structure and deformation of Si-24 and Mg-40 of interest to x-ray burst nucleosynthesis, and even of the extremely heavy nuclei such as Er-166,Er-168 and U-236, that build on first-principles considerations.
Název v anglickém jazyce
Machine learning approach to pattern recognition in nuclear dynamics from the ab initio symmetry-adapted no-core shell model
Popis výsledku anglicky
A novel machine learning approach is used to provide further insight into atomic nuclei and to detect orderly patterns amid a vast data of large-scale calculations. The method utilizes a neural network that is trained on ab initio results from the symmetry-adapted no-core shell model (SA-NCSM) for light nuclei. We show that the SA-NCSM, which expands ab initio applications up to medium-mass nuclei by using dominant symmetries of nuclear dynamics, can reach heavier nuclei when coupled with the machine learning approach. In particular, we find that a neural network trained on probability amplitudes for s- and p-shell nuclear wave functions not only predicts dominant configurations for heavier nuclei but in addition, when tested for the Ne-20 ground state, accurately reproduces the probability distribution. The non-negligible configurations predicted by the network provide an important input to the SA-NCSM for reducing ultralarge model spaces to manageable sizes that can be, in turn, utilized in SA-NCSM calculations to obtain accurate observables. The neural network is capable of describing nuclear deformation and is used to track the shape evolution along the Mg20-42 isotopic chain, suggesting a shape coexistence that is more pronounced toward the very neutron-rich isotopes. We provide first descriptions of the structure and deformation of Si-24 and Mg-40 of interest to x-ray burst nucleosynthesis, and even of the extremely heavy nuclei such as Er-166,Er-168 and U-236, that build on first-principles considerations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10304 - Nuclear physics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-14497S" target="_blank" >GA22-14497S: Posouvání hranic ab initio výpočtů jaderné struktury</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review C
ISSN
2469-9985
e-ISSN
2469-9993
Svazek periodika
105
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
034306
Kód UT WoS článku
000767144000001
EID výsledku v databázi Scopus
2-s2.0-85126700632