Characterizing heavy ions-irradiated Zr/Nb: Structure and mechanical properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F22%3A00560394" target="_blank" >RIV/61389005:_____/22:00560394 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/26722445:_____/22:N0000039 RIV/68407700:21230/22:00358726 RIV/68407700:21340/22:00358726
Výsledek na webu
<a href="https://doi.org/10.1016/j.matdes.2022.110732" target="_blank" >https://doi.org/10.1016/j.matdes.2022.110732</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matdes.2022.110732" target="_blank" >10.1016/j.matdes.2022.110732</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Characterizing heavy ions-irradiated Zr/Nb: Structure and mechanical properties
Popis výsledku v původním jazyce
In this work, the radiation responses of Zr/Nb nanostructured metallic multilayers (NMMs) are studied. The nanostructures with different layer thicknesses were deposited on Si (111) substrate by using magnetron sputtering and were subjected to heavy-ion irradiation at room temperature with different fluences. Nanoindentation, XRD, DFT, SIMS, and Variable Energy Positron Annihilation Spectroscopy (VEPAS) techniques were used to study the type and distribution of defects, and strain within the material as well as the changes in the hardness of the structures as a function of damage. Our results suggest that the strain and the irradiation hardening are layer thickness- and damage-dependent while they are independent of the type of irradiated ions. The magnitude of hardening decreases with decreasing individual layer thickness indicating that the number of interfaces has a direct effect on the radiation tolerance enhancement. For thin layers with a periodicity of 27 nm (Zr/Nb27), a transition from hardening to softening occurs at high fluence, and a saturation point is reached in thick layers with a periodicity of 96 nm (Zr/Nb96). The as-deposited thin multilayers presented a significantly higher atomic-scale disorder which increases with ion irradiation compared to the thick multilayers. VEPAS reveals the vacancy defects before and after irradiation that contribute to the presented strain. Based on the findings, thin nanostructured Zr/Nb multilayered structures possess excellent radiation resistance due to the high density of interfaces that act as sinks for radiation-induced point defects.
Název v anglickém jazyce
Characterizing heavy ions-irradiated Zr/Nb: Structure and mechanical properties
Popis výsledku anglicky
In this work, the radiation responses of Zr/Nb nanostructured metallic multilayers (NMMs) are studied. The nanostructures with different layer thicknesses were deposited on Si (111) substrate by using magnetron sputtering and were subjected to heavy-ion irradiation at room temperature with different fluences. Nanoindentation, XRD, DFT, SIMS, and Variable Energy Positron Annihilation Spectroscopy (VEPAS) techniques were used to study the type and distribution of defects, and strain within the material as well as the changes in the hardness of the structures as a function of damage. Our results suggest that the strain and the irradiation hardening are layer thickness- and damage-dependent while they are independent of the type of irradiated ions. The magnitude of hardening decreases with decreasing individual layer thickness indicating that the number of interfaces has a direct effect on the radiation tolerance enhancement. For thin layers with a periodicity of 27 nm (Zr/Nb27), a transition from hardening to softening occurs at high fluence, and a saturation point is reached in thick layers with a periodicity of 96 nm (Zr/Nb96). The as-deposited thin multilayers presented a significantly higher atomic-scale disorder which increases with ion irradiation compared to the thick multilayers. VEPAS reveals the vacancy defects before and after irradiation that contribute to the presented strain. Based on the findings, thin nanostructured Zr/Nb multilayered structures possess excellent radiation resistance due to the high density of interfaces that act as sinks for radiation-induced point defects.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials and Design
ISSN
0264-1275
e-ISSN
1873-4197
Svazek periodika
219
Číslo periodika v rámci svazku
JUL
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
110732
Kód UT WoS článku
000808151400008
EID výsledku v databázi Scopus
2-s2.0-85130960268