Counting-Based Effective Dimension and Discrete Regularizations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00570934" target="_blank" >RIV/61389005:_____/23:00570934 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/e25030482" target="_blank" >https://doi.org/10.3390/e25030482</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e25030482" target="_blank" >10.3390/e25030482</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Counting-Based Effective Dimension and Discrete Regularizations
Popis výsledku v původním jazyce
Fractal-like structures of varying complexity are common in nature, and measure-based dimensions (Minkowski, Hausdorff) supply their basic geometric characterization. However, at the level of fundamental dynamics, which is quantum, structure does not enter via geometric features of fixed sets but is encoded in probability distributions on associated spaces. The question then arises whether a robust notion of the fractal measure-based dimension exists for structures represented in this way. Starting from effective number theory, we construct all counting-based schemes to select effective supports on collections of objects with probabilities and associate the effective counting dimension (ECD) with each. We then show that the ECD is scheme-independent and, thus, a well-defined measure-based dimension whose meaning is analogous to the Minkowski dimension of fixed sets. In physics language, ECD characterizes probabilistic descriptions arising in a theory or model via discrete 'regularization'. For example, our analysis makes recent surprising results on effective spatial dimensions in quantum chromodynamics and Anderson models well founded. We discuss how to assess the reliability of regularization removals in practice and perform such analysis in the context of 3d Anderson criticality.
Název v anglickém jazyce
Counting-Based Effective Dimension and Discrete Regularizations
Popis výsledku anglicky
Fractal-like structures of varying complexity are common in nature, and measure-based dimensions (Minkowski, Hausdorff) supply their basic geometric characterization. However, at the level of fundamental dynamics, which is quantum, structure does not enter via geometric features of fixed sets but is encoded in probability distributions on associated spaces. The question then arises whether a robust notion of the fractal measure-based dimension exists for structures represented in this way. Starting from effective number theory, we construct all counting-based schemes to select effective supports on collections of objects with probabilities and associate the effective counting dimension (ECD) with each. We then show that the ECD is scheme-independent and, thus, a well-defined measure-based dimension whose meaning is analogous to the Minkowski dimension of fixed sets. In physics language, ECD characterizes probabilistic descriptions arising in a theory or model via discrete 'regularization'. For example, our analysis makes recent surprising results on effective spatial dimensions in quantum chromodynamics and Anderson models well founded. We discuss how to assess the reliability of regularization removals in practice and perform such analysis in the context of 3d Anderson criticality.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Entropy
ISSN
1099-4300
e-ISSN
1099-4300
Svazek periodika
25
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
482
Kód UT WoS článku
000955968600001
EID výsledku v databázi Scopus
2-s2.0-85152448583