Reduction of fossil CO2 emissions of engine fuels by integration of stabilized bio-oil distillation residue to a crude-oil refinery hydrocracking process
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00572212" target="_blank" >RIV/61389005:_____/23:00572212 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22320/23:43925968
Výsledek na webu
<a href="https://doi.org/10.1016/j.cej.2023.142899" target="_blank" >https://doi.org/10.1016/j.cej.2023.142899</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cej.2023.142899" target="_blank" >10.1016/j.cej.2023.142899</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reduction of fossil CO2 emissions of engine fuels by integration of stabilized bio-oil distillation residue to a crude-oil refinery hydrocracking process
Popis výsledku v původním jazyce
Utilization of waste lignocellulosic biomass to produce high-quality fuels with renewable carbon content using existing refinery infrastructure is an important step towards carbon neutrality. Direct hydroprocessing of pyrolysis bio-oil to liquid biofuels is technically challenging due to its wide fractional and complex chemical composition that requires harsh reaction conditions associated with extensive biocarbon loss to the gaseous products. We have proposed a novel bio-oil hydroprocessing strategy based on 1) bio-oil hydrotreatment (stabilization), 2) fractionation of the stabilized bio-oil and 3) co-processing of the fractions in appropriate refinery processes. In this work, we focus on the co-processing of the stabilized bio-oil distillation residue (SBDR, b.p. 360+degrees C) with vacuum gas-oil (VGO) in a hydrocracking fixed bed reactor under conventional conditions. This allowed us to maximize biogenic carbon content (92%) in the liquid transportation fuels as confirmed by the distribution of 14C (obtained by Accelerator Mass Spectrometry) into the corresponding fractions. i.e. gases, naphtha, kerosene, diesel and distillation residue. Reduction of the fossil CO2 emission was 3 times higher for the naphtha fraction compared with E10 gasoline, 2.4 times higher for the diesel fraction compared with B7 diesel (7 vol% FAME). Detailed analysis of the products via GC x GC-TOFMS, 13C NMR, and FTIR together with the standardized methods demonstrated that fuel distillates met requirements for conventional fuels with only negligible effect of the SBDR on physicochemical properties of products and catalyst stability. This shows that the co-hydrocracking of SBDR is a suitable process to maximize liquid fuel production with increased biogenic carbon content.
Název v anglickém jazyce
Reduction of fossil CO2 emissions of engine fuels by integration of stabilized bio-oil distillation residue to a crude-oil refinery hydrocracking process
Popis výsledku anglicky
Utilization of waste lignocellulosic biomass to produce high-quality fuels with renewable carbon content using existing refinery infrastructure is an important step towards carbon neutrality. Direct hydroprocessing of pyrolysis bio-oil to liquid biofuels is technically challenging due to its wide fractional and complex chemical composition that requires harsh reaction conditions associated with extensive biocarbon loss to the gaseous products. We have proposed a novel bio-oil hydroprocessing strategy based on 1) bio-oil hydrotreatment (stabilization), 2) fractionation of the stabilized bio-oil and 3) co-processing of the fractions in appropriate refinery processes. In this work, we focus on the co-processing of the stabilized bio-oil distillation residue (SBDR, b.p. 360+degrees C) with vacuum gas-oil (VGO) in a hydrocracking fixed bed reactor under conventional conditions. This allowed us to maximize biogenic carbon content (92%) in the liquid transportation fuels as confirmed by the distribution of 14C (obtained by Accelerator Mass Spectrometry) into the corresponding fractions. i.e. gases, naphtha, kerosene, diesel and distillation residue. Reduction of the fossil CO2 emission was 3 times higher for the naphtha fraction compared with E10 gasoline, 2.4 times higher for the diesel fraction compared with B7 diesel (7 vol% FAME). Detailed analysis of the products via GC x GC-TOFMS, 13C NMR, and FTIR together with the standardized methods demonstrated that fuel distillates met requirements for conventional fuels with only negligible effect of the SBDR on physicochemical properties of products and catalyst stability. This shows that the co-hydrocracking of SBDR is a suitable process to maximize liquid fuel production with increased biogenic carbon content.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
<a href="/cs/project/EF16_019%2F0000728" target="_blank" >EF16_019/0000728: Výzkum ultrastopových izotopů a jejich využití v sociálních a environmentálních vědách urychlovačovou hmotnostní spektrometrií</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Engineering Journal
ISSN
1385-8947
e-ISSN
1873-3212
Svazek periodika
465
Číslo periodika v rámci svazku
JUN
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
142899
Kód UT WoS článku
000983198700001
EID výsledku v databázi Scopus
2-s2.0-85152147665