Three Alternative Model-Building Strategies Using Quasi-Hermitian Time-Dependent Observables
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00575352" target="_blank" >RIV/61389005:_____/23:00575352 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/62690094:18470/23:50020905
Výsledek na webu
<a href="https://doi.org/10.3390/sym15081596" target="_blank" >https://doi.org/10.3390/sym15081596</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/sym15081596" target="_blank" >10.3390/sym15081596</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Three Alternative Model-Building Strategies Using Quasi-Hermitian Time-Dependent Observables
Popis výsledku v původním jazyce
In the conventional (so-called Schrodinger-picture) formulation of quantum theory the operators of observables are chosen self-adjoint and time-independent. In the recent innovation of the theory, the operators can be not only non-Hermitian but also time-dependent. The formalism (called non-Hermitian interaction-picture, NIP) requires a separate description of the evolution of the time-dependent states ? (t) (using Schrodinger-type equations) as well as of the time-dependent observables ?(j)(t), j = 1, 2, ... , K (using Heisenberg-type equations). In the unitary-evolution dynamical regime of our interest, both of the respective generators of the evolution (viz., in our notation, the Schrodingerian generator G(t) and the Heisenbergian generator S(t)) have, in general, complex spectra. Only the spectrum of their superposition remains real. Thus, only the observable superposition H(t) = G(t) + S(t) (representing the instantaneous energies) should be called Hamiltonian. In applications, nevertheless, the mathematically consistent models can be based not only on the initial knowledge of the energy operator H(t) (forming a 'dynamical' model-building strategy) but also, alternatively, on the knowledge of the Coriolis force S(t) (forming a 'kinematical' model-building strategy), or on the initial knowledge of the Schrodingerian generator G(t) (forming, for some reason, one of the most popular strategies in the literature). In our present paper, every such choice (marked as 'one', 'two' or 'three', respectively) is shown to lead to a construction recipe with a specific range of applicability.
Název v anglickém jazyce
Three Alternative Model-Building Strategies Using Quasi-Hermitian Time-Dependent Observables
Popis výsledku anglicky
In the conventional (so-called Schrodinger-picture) formulation of quantum theory the operators of observables are chosen self-adjoint and time-independent. In the recent innovation of the theory, the operators can be not only non-Hermitian but also time-dependent. The formalism (called non-Hermitian interaction-picture, NIP) requires a separate description of the evolution of the time-dependent states ? (t) (using Schrodinger-type equations) as well as of the time-dependent observables ?(j)(t), j = 1, 2, ... , K (using Heisenberg-type equations). In the unitary-evolution dynamical regime of our interest, both of the respective generators of the evolution (viz., in our notation, the Schrodingerian generator G(t) and the Heisenbergian generator S(t)) have, in general, complex spectra. Only the spectrum of their superposition remains real. Thus, only the observable superposition H(t) = G(t) + S(t) (representing the instantaneous energies) should be called Hamiltonian. In applications, nevertheless, the mathematically consistent models can be based not only on the initial knowledge of the energy operator H(t) (forming a 'dynamical' model-building strategy) but also, alternatively, on the knowledge of the Coriolis force S(t) (forming a 'kinematical' model-building strategy), or on the initial knowledge of the Schrodingerian generator G(t) (forming, for some reason, one of the most popular strategies in the literature). In our present paper, every such choice (marked as 'one', 'two' or 'three', respectively) is shown to lead to a construction recipe with a specific range of applicability.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Symmetry-Basel
ISSN
2073-8994
e-ISSN
2073-8994
Svazek periodika
15
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
13
Strana od-do
1596
Kód UT WoS článku
001056629400001
EID výsledku v databázi Scopus
2-s2.0-85168876023