Topological Dimensions from Disorder and Quantum Mechanics?
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F23%3A00579732" target="_blank" >RIV/61389005:_____/23:00579732 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/e25111557" target="_blank" >https://doi.org/10.3390/e25111557</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e25111557" target="_blank" >10.3390/e25111557</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Topological Dimensions from Disorder and Quantum Mechanics?
Popis výsledku v původním jazyce
We have recently shown that the critical Anderson electron in D=3 dimensions effectively occupies a spatial region of the infrared (IR) scaling dimension dIR approximate to 8/3. Here, we inquire about the dimensional substructure involved. We partition space into regions of equal quantum occurrence probabilities, such that the points comprising a region are of similar relevance, and calculate the IR scaling dimension d of each. This allows us to infer the probability density p(d) for dimension d to be accessed by the electron. We find that p(d) has a strong peak at d very close to two. In fact, our data suggest that p(d) is non-zero on the interval [dmin,dmax]approximate to[4/3,8/3] and may develop a discrete part (delta-function) at d=2 in the infinite-volume limit. The latter invokes the possibility that a combination of quantum mechanics and pure disorder can lead to the emergence of integer (topological) dimensions. Although dIR is based on effective counting, of which p(d) has no a priori knowledge, dIR >= dmax is an exact feature of the ensuing formalism. A possible connection of our results to the recent findings of dIR approximate to 2 in Dirac near-zero modes of thermal quantum chromodynamics is emphasized.
Název v anglickém jazyce
Topological Dimensions from Disorder and Quantum Mechanics?
Popis výsledku anglicky
We have recently shown that the critical Anderson electron in D=3 dimensions effectively occupies a spatial region of the infrared (IR) scaling dimension dIR approximate to 8/3. Here, we inquire about the dimensional substructure involved. We partition space into regions of equal quantum occurrence probabilities, such that the points comprising a region are of similar relevance, and calculate the IR scaling dimension d of each. This allows us to infer the probability density p(d) for dimension d to be accessed by the electron. We find that p(d) has a strong peak at d very close to two. In fact, our data suggest that p(d) is non-zero on the interval [dmin,dmax]approximate to[4/3,8/3] and may develop a discrete part (delta-function) at d=2 in the infinite-volume limit. The latter invokes the possibility that a combination of quantum mechanics and pure disorder can lead to the emergence of integer (topological) dimensions. Although dIR is based on effective counting, of which p(d) has no a priori knowledge, dIR >= dmax is an exact feature of the ensuing formalism. A possible connection of our results to the recent findings of dIR approximate to 2 in Dirac near-zero modes of thermal quantum chromodynamics is emphasized.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Entropy
ISSN
1099-4300
e-ISSN
1099-4300
Svazek periodika
25
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
9
Strana od-do
1557
Kód UT WoS článku
001118370500001
EID výsledku v databázi Scopus
2-s2.0-85178142533