Microstructure and thermal stability of MgZnYAl alloy containing cluster-arranged nanoplates (CANaPs)
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00601132" target="_blank" >RIV/61389005:_____/24:00601132 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/24:10493276
Výsledek na webu
<a href="https://doi.org/10.1016/j.matchar.2024.114492" target="_blank" >https://doi.org/10.1016/j.matchar.2024.114492</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.matchar.2024.114492" target="_blank" >10.1016/j.matchar.2024.114492</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Microstructure and thermal stability of MgZnYAl alloy containing cluster-arranged nanoplates (CANaPs)
Popis výsledku v původním jazyce
The thermal stability of the microstructure of Mg - 0.9 % Zn - 2.05 % Y - 0.15 % Al (at.%) alloy prepared by conventional extrusion (CE) from cast ingot and rapidly solidified (RS) ribbon consolidation method has been investigated by scanning and transmission electron microscopy. It is shown that in the initial state, although both microstructures consist of small recrystallized and large non-recrystallized grains, the distribution and morphology of the solute-enriched phases are strongly influenced by the processing route. Particularly, the RS alloy mainly contains fine homogeneously distributed cluster-arranged nanoplates (CANaPs), while the CE alloy is characterized by larger solute-enriched phases (incl. CANaPs and LPSO fractions) together with individual cluster-arranged layers (CALs) and/or thin CANaPs. Differences in the size and distribution of solute-enriched phases naturally affect the recrystallization dynamics during post-processing heat treatment. Nevertheless, both types of material exhibited exceptionally high thermal stability up to 300 degrees C, which significantly exceeds the values reported for conventional Mg alloy systems.
Název v anglickém jazyce
Microstructure and thermal stability of MgZnYAl alloy containing cluster-arranged nanoplates (CANaPs)
Popis výsledku anglicky
The thermal stability of the microstructure of Mg - 0.9 % Zn - 2.05 % Y - 0.15 % Al (at.%) alloy prepared by conventional extrusion (CE) from cast ingot and rapidly solidified (RS) ribbon consolidation method has been investigated by scanning and transmission electron microscopy. It is shown that in the initial state, although both microstructures consist of small recrystallized and large non-recrystallized grains, the distribution and morphology of the solute-enriched phases are strongly influenced by the processing route. Particularly, the RS alloy mainly contains fine homogeneously distributed cluster-arranged nanoplates (CANaPs), while the CE alloy is characterized by larger solute-enriched phases (incl. CANaPs and LPSO fractions) together with individual cluster-arranged layers (CALs) and/or thin CANaPs. Differences in the size and distribution of solute-enriched phases naturally affect the recrystallization dynamics during post-processing heat treatment. Nevertheless, both types of material exhibited exceptionally high thermal stability up to 300 degrees C, which significantly exceeds the values reported for conventional Mg alloy systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Characterization
ISSN
1044-5803
e-ISSN
1873-4189
Svazek periodika
218
Číslo periodika v rámci svazku
DEC
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
114492
Kód UT WoS článku
001351185900001
EID výsledku v databázi Scopus
2-s2.0-85207891611