Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

IR Pulsed Laser Ablation of Carbon Materials in High Vacuum

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00603314" target="_blank" >RIV/61389005:_____/24:00603314 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.3390/app142411744" target="_blank" >https://doi.org/10.3390/app142411744</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app142411744" target="_blank" >10.3390/app142411744</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    IR Pulsed Laser Ablation of Carbon Materials in High Vacuum

  • Popis výsledku v původním jazyce

    Featured Application The IR pulsed laser ablation of different carbon targets using a Nd:YAG laser is investigated. The produced carbon plasma is characterized in terms of maximum ion energy at a laser intensity of about 3 x 109 W/cm2. The presented study can be applied to the use of carbon ions for their successive acceleration in laser ion sources or for the investigation of carbon-nucleation-generating nanoparticles.Abstract This work aimed to understand how the energy released by short laser pulses can produce different effects in carbon targets with different allotropic states. The IR pulse laser ablation, operating at 1064 nm wavelength, 3 ns pulse duration, and 100 mJ pulse energy, has been used to irradiate different types of carbon targets in a high vacuum. Graphite, highly oriented pyrolytic graphite, glassy carbon, active carbon, and vegetable carbon have exhibited different mass densities and have been laser irradiated. Time-of-flight (TOF) measurements have permitted the evince of the maximum carbon ion acceleration in the generated plasma (of about 200 eV per charge state) and the maximum yield emission (96 mu g/pulse in the case of vegetal carbon) along the direction normal to the irradiated surface. The ion energy analyzer measured the carbon charge states (four) and their energy distributions. Further plasma investigations have been performed using a fast CCD camera image and surface profiles of the generated craters to calculate the angular emission and the ablation yield for each type of target. The effects as a function of the target carbon density and binding energy have been highlighted. Possible applications for the generation of thin films and carbon nanoparticles are discussed.

  • Název v anglickém jazyce

    IR Pulsed Laser Ablation of Carbon Materials in High Vacuum

  • Popis výsledku anglicky

    Featured Application The IR pulsed laser ablation of different carbon targets using a Nd:YAG laser is investigated. The produced carbon plasma is characterized in terms of maximum ion energy at a laser intensity of about 3 x 109 W/cm2. The presented study can be applied to the use of carbon ions for their successive acceleration in laser ion sources or for the investigation of carbon-nucleation-generating nanoparticles.Abstract This work aimed to understand how the energy released by short laser pulses can produce different effects in carbon targets with different allotropic states. The IR pulse laser ablation, operating at 1064 nm wavelength, 3 ns pulse duration, and 100 mJ pulse energy, has been used to irradiate different types of carbon targets in a high vacuum. Graphite, highly oriented pyrolytic graphite, glassy carbon, active carbon, and vegetable carbon have exhibited different mass densities and have been laser irradiated. Time-of-flight (TOF) measurements have permitted the evince of the maximum carbon ion acceleration in the generated plasma (of about 200 eV per charge state) and the maximum yield emission (96 mu g/pulse in the case of vegetal carbon) along the direction normal to the irradiated surface. The ion energy analyzer measured the carbon charge states (four) and their energy distributions. Further plasma investigations have been performed using a fast CCD camera image and surface profiles of the generated craters to calculate the angular emission and the ablation yield for each type of target. The effects as a function of the target carbon density and binding energy have been highlighted. Possible applications for the generation of thin films and carbon nanoparticles are discussed.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences-Basel

  • ISSN

    2076-3417

  • e-ISSN

    2076-3417

  • Svazek periodika

    14

  • Číslo periodika v rámci svazku

    24

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    15

  • Strana od-do

    11744

  • Kód UT WoS článku

    001384149300001

  • EID výsledku v databázi Scopus

    2-s2.0-85213266243