IR Pulsed Laser Ablation of Carbon Materials in High Vacuum
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389005%3A_____%2F24%3A00603314" target="_blank" >RIV/61389005:_____/24:00603314 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/app142411744" target="_blank" >https://doi.org/10.3390/app142411744</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app142411744" target="_blank" >10.3390/app142411744</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
IR Pulsed Laser Ablation of Carbon Materials in High Vacuum
Popis výsledku v původním jazyce
Featured Application The IR pulsed laser ablation of different carbon targets using a Nd:YAG laser is investigated. The produced carbon plasma is characterized in terms of maximum ion energy at a laser intensity of about 3 x 109 W/cm2. The presented study can be applied to the use of carbon ions for their successive acceleration in laser ion sources or for the investigation of carbon-nucleation-generating nanoparticles.Abstract This work aimed to understand how the energy released by short laser pulses can produce different effects in carbon targets with different allotropic states. The IR pulse laser ablation, operating at 1064 nm wavelength, 3 ns pulse duration, and 100 mJ pulse energy, has been used to irradiate different types of carbon targets in a high vacuum. Graphite, highly oriented pyrolytic graphite, glassy carbon, active carbon, and vegetable carbon have exhibited different mass densities and have been laser irradiated. Time-of-flight (TOF) measurements have permitted the evince of the maximum carbon ion acceleration in the generated plasma (of about 200 eV per charge state) and the maximum yield emission (96 mu g/pulse in the case of vegetal carbon) along the direction normal to the irradiated surface. The ion energy analyzer measured the carbon charge states (four) and their energy distributions. Further plasma investigations have been performed using a fast CCD camera image and surface profiles of the generated craters to calculate the angular emission and the ablation yield for each type of target. The effects as a function of the target carbon density and binding energy have been highlighted. Possible applications for the generation of thin films and carbon nanoparticles are discussed.
Název v anglickém jazyce
IR Pulsed Laser Ablation of Carbon Materials in High Vacuum
Popis výsledku anglicky
Featured Application The IR pulsed laser ablation of different carbon targets using a Nd:YAG laser is investigated. The produced carbon plasma is characterized in terms of maximum ion energy at a laser intensity of about 3 x 109 W/cm2. The presented study can be applied to the use of carbon ions for their successive acceleration in laser ion sources or for the investigation of carbon-nucleation-generating nanoparticles.Abstract This work aimed to understand how the energy released by short laser pulses can produce different effects in carbon targets with different allotropic states. The IR pulse laser ablation, operating at 1064 nm wavelength, 3 ns pulse duration, and 100 mJ pulse energy, has been used to irradiate different types of carbon targets in a high vacuum. Graphite, highly oriented pyrolytic graphite, glassy carbon, active carbon, and vegetable carbon have exhibited different mass densities and have been laser irradiated. Time-of-flight (TOF) measurements have permitted the evince of the maximum carbon ion acceleration in the generated plasma (of about 200 eV per charge state) and the maximum yield emission (96 mu g/pulse in the case of vegetal carbon) along the direction normal to the irradiated surface. The ion energy analyzer measured the carbon charge states (four) and their energy distributions. Further plasma investigations have been performed using a fast CCD camera image and surface profiles of the generated craters to calculate the angular emission and the ablation yield for each type of target. The effects as a function of the target carbon density and binding energy have been highlighted. Possible applications for the generation of thin films and carbon nanoparticles are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences-Basel
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
14
Číslo periodika v rámci svazku
24
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
15
Strana od-do
11744
Kód UT WoS článku
001384149300001
EID výsledku v databázi Scopus
2-s2.0-85213266243