Adsorption of lysozyme on pH-responsive PnBA-b-PAA polymeric nanoparticles: studies by stopped-flow SAXS and ITC
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F18%3A00490445" target="_blank" >RIV/61389013:_____/18:00490445 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00396-018-4329-4" target="_blank" >http://dx.doi.org/10.1007/s00396-018-4329-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00396-018-4329-4" target="_blank" >10.1007/s00396-018-4329-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adsorption of lysozyme on pH-responsive PnBA-b-PAA polymeric nanoparticles: studies by stopped-flow SAXS and ITC
Popis výsledku v původním jazyce
The interactions of poly(n-butyl acrylate)-b-poly(acrylic acid) (PnBA-b-PAA) block copolymer nanoparticles with lysozyme were examined by a stopped-flow technique consisting of small-angle X-ray scattering (SAXS) and isothermal titration calorimetry (ITC). Nanoparticles composed of PnBA-b-PAA block copolymer had a spherical shape and core-shell structure, which was confirmed by cryo-transmission electron microscopy (cryo-TEM) and SAXS. ITC revealed that lysozyme binds to the nanoparticle surface and that the strength of the binding depends on the ionic strength of the solution and the composition of the PnBA-b-PAA copolymers. Thermodynamic results unambiguously indicated that the interaction of lysozyme with the nanoparticle surface is a two-step process and entropy driven. Stopped-flow experiments proved that lysozyme penetration into the PAA corona occurs on a time scale of hundreds of milliseconds. Based on the fitting of SAXS curves, the number of micelles per volume increases with time, the core size remains nearly constant, and the thickness of the shell decreases. Such findings justify the model proposed in our previous papers.
Název v anglickém jazyce
Adsorption of lysozyme on pH-responsive PnBA-b-PAA polymeric nanoparticles: studies by stopped-flow SAXS and ITC
Popis výsledku anglicky
The interactions of poly(n-butyl acrylate)-b-poly(acrylic acid) (PnBA-b-PAA) block copolymer nanoparticles with lysozyme were examined by a stopped-flow technique consisting of small-angle X-ray scattering (SAXS) and isothermal titration calorimetry (ITC). Nanoparticles composed of PnBA-b-PAA block copolymer had a spherical shape and core-shell structure, which was confirmed by cryo-transmission electron microscopy (cryo-TEM) and SAXS. ITC revealed that lysozyme binds to the nanoparticle surface and that the strength of the binding depends on the ionic strength of the solution and the composition of the PnBA-b-PAA copolymers. Thermodynamic results unambiguously indicated that the interaction of lysozyme with the nanoparticle surface is a two-step process and entropy driven. Stopped-flow experiments proved that lysozyme penetration into the PAA corona occurs on a time scale of hundreds of milliseconds. Based on the fitting of SAXS curves, the number of micelles per volume increases with time, the core size remains nearly constant, and the thickness of the shell decreases. Such findings justify the model proposed in our previous papers.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
<a href="/cs/project/LH15213" target="_blank" >LH15213: Chování a tvar nanočástic – protirakovinných nosičů léčiv ve skutečném prostředí krve.</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Colloid and Polymer Science
ISSN
0303-402X
e-ISSN
—
Svazek periodika
296
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
9
Strana od-do
1183-1191
Kód UT WoS článku
000435592300009
EID výsledku v databázi Scopus
2-s2.0-85047362735