Biodegradability of blends based on aliphatic polyester and thermoplastic starch
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F19%3A00503840" target="_blank" >RIV/61389013:_____/19:00503840 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs11696-018-0663-8" target="_blank" >https://link.springer.com/article/10.1007%2Fs11696-018-0663-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11696-018-0663-8" target="_blank" >10.1007/s11696-018-0663-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Biodegradability of blends based on aliphatic polyester and thermoplastic starch
Popis výsledku v původním jazyce
In this work, biodegradable aliphatic polyester blends of polycaprolactone and polylactide were melted and blended with a natural and biodegradable thermoplastic starch (TPS). The TPS employed in this study was obtained by plasticization of isolated wheat starch using glycerol as plasticizer. Morphology as well as thermal properties of the blends was investigated, and water vapor permeability as a barrier property was also monitored. The biodegradability of the biodegradable blends was performed by a composting process on laboratory scale. The composting process was conducted in an adiabatic closed reactor for 21 days and during the composting process, the temperature, pH value, % moisture and volatile matter and evolved CO2 were monitored. Biodegradation of the blends was determined by weight loss, as well as monitoring of morphological surface change. The thermophilic phase prevailed in the composting process, indicating intensive biodegradation of substrate as well as biodegradation of investigated ternary blends. Since microorganisms use starch as a carbon source, addition of TPS causes considerable acceleration of biodegradation of ternary blends due to higher water vapor permeability as a result of the hydrophilic nature of starch. The thermoplastic starch was first degraded within the blend, which was facilitated access to the microorganisms of other ingredients in the blend, encouraging the biodegradation of other components.
Název v anglickém jazyce
Biodegradability of blends based on aliphatic polyester and thermoplastic starch
Popis výsledku anglicky
In this work, biodegradable aliphatic polyester blends of polycaprolactone and polylactide were melted and blended with a natural and biodegradable thermoplastic starch (TPS). The TPS employed in this study was obtained by plasticization of isolated wheat starch using glycerol as plasticizer. Morphology as well as thermal properties of the blends was investigated, and water vapor permeability as a barrier property was also monitored. The biodegradability of the biodegradable blends was performed by a composting process on laboratory scale. The composting process was conducted in an adiabatic closed reactor for 21 days and during the composting process, the temperature, pH value, % moisture and volatile matter and evolved CO2 were monitored. Biodegradation of the blends was determined by weight loss, as well as monitoring of morphological surface change. The thermophilic phase prevailed in the composting process, indicating intensive biodegradation of substrate as well as biodegradation of investigated ternary blends. Since microorganisms use starch as a carbon source, addition of TPS causes considerable acceleration of biodegradation of ternary blends due to higher water vapor permeability as a result of the hydrophilic nature of starch. The thermoplastic starch was first degraded within the blend, which was facilitated access to the microorganisms of other ingredients in the blend, encouraging the biodegradation of other components.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Chemical Papers
ISSN
2585-7290
e-ISSN
—
Svazek periodika
73
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
SK - Slovenská republika
Počet stran výsledku
14
Strana od-do
1121-1134
Kód UT WoS článku
000463985400009
EID výsledku v databázi Scopus
2-s2.0-85064246086