Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Transferring lithium ions in the nanochannels of flexible metal-organic frameworks featuring superchaotropic metallacarborane guests: mechanism of ionic conductivity at atomic resolution

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F20%3A00533405" target="_blank" >RIV/61389013:_____/20:00533405 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68378271:_____/20:00533405

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acsami.0c12293" target="_blank" >https://pubs.acs.org/doi/10.1021/acsami.0c12293</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsami.0c12293" target="_blank" >10.1021/acsami.0c12293</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Transferring lithium ions in the nanochannels of flexible metal-organic frameworks featuring superchaotropic metallacarborane guests: mechanism of ionic conductivity at atomic resolution

  • Popis výsledku v původním jazyce

    Metal–organic frameworks (MOFs), owing to their unique architecture, attract consistent attention in the design of high-performance Li battery materials. Here, we report a new category of ion-conducting crystalline materials for all-solid-state electrolytes based on an MIL53(Al) framework featuring a superchaotropic metallacarborane (Li+CoD–) salt and present the first quantitative data on Li+ ion sites, local dynamics, chemical exchange, and the formation of charge-transfer pathways. We used multinuclear solid-state nuclear magnetic resonance (ss-NMR) spectroscopy to examine the mechanism of ionic conductivity at atomic resolution and to elucidate order–disorder processes, framework–ion interactions, and framework breathing during the loading of Li+CoD– species and transfer of Li+ ions. In this way, the MIL53(Al)@LiCoD framework was found to adopt an open-pore conformation accompanied by a minor fraction of narrow-pore channels. The inserted Li+ ions have two states (free and bound), which both exhibit extensive motions. Both types of Li+ ions form mutually communicating chains, which are large enough to enable efficient long-range charge transfer and macroscopic conductivity. The superchaotropic anions undergo high-amplitude uniaxial rotation motions supporting the transfer of Li+ cations along them, while the fluctuations of MOF aromatic linkers support the penetration of Li+ through the channel walls. Our findings provide a detailed atomic-resolution insight into the mechanism of ionic conductivity and thus have significant implications for the design of the next generation of energy-related materials.

  • Název v anglickém jazyce

    Transferring lithium ions in the nanochannels of flexible metal-organic frameworks featuring superchaotropic metallacarborane guests: mechanism of ionic conductivity at atomic resolution

  • Popis výsledku anglicky

    Metal–organic frameworks (MOFs), owing to their unique architecture, attract consistent attention in the design of high-performance Li battery materials. Here, we report a new category of ion-conducting crystalline materials for all-solid-state electrolytes based on an MIL53(Al) framework featuring a superchaotropic metallacarborane (Li+CoD–) salt and present the first quantitative data on Li+ ion sites, local dynamics, chemical exchange, and the formation of charge-transfer pathways. We used multinuclear solid-state nuclear magnetic resonance (ss-NMR) spectroscopy to examine the mechanism of ionic conductivity at atomic resolution and to elucidate order–disorder processes, framework–ion interactions, and framework breathing during the loading of Li+CoD– species and transfer of Li+ ions. In this way, the MIL53(Al)@LiCoD framework was found to adopt an open-pore conformation accompanied by a minor fraction of narrow-pore channels. The inserted Li+ ions have two states (free and bound), which both exhibit extensive motions. Both types of Li+ ions form mutually communicating chains, which are large enough to enable efficient long-range charge transfer and macroscopic conductivity. The superchaotropic anions undergo high-amplitude uniaxial rotation motions supporting the transfer of Li+ cations along them, while the fluctuations of MOF aromatic linkers support the penetration of Li+ through the channel walls. Our findings provide a detailed atomic-resolution insight into the mechanism of ionic conductivity and thus have significant implications for the design of the next generation of energy-related materials.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10404 - Polymer science

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Applied Materials and Interfaces

  • ISSN

    1944-8244

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    42

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    47447-47456

  • Kód UT WoS článku

    000584489800029

  • EID výsledku v databázi Scopus

    2-s2.0-85094219898