Engineering of pH-triggered nanoplatforms based on novel poly(2-methyl-2-oxazoline)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymers with tunable morphologies for biomedical applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F21%3A00542466" target="_blank" >RIV/61389013:_____/21:00542466 - isvavai.cz</a>
Výsledek na webu
<a href="https://pubs.rsc.org/en/content/articlelanding/2021/PY/D1PY00141H#!divAbstract" target="_blank" >https://pubs.rsc.org/en/content/articlelanding/2021/PY/D1PY00141H#!divAbstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/D1PY00141H" target="_blank" >10.1039/D1PY00141H</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Engineering of pH-triggered nanoplatforms based on novel poly(2-methyl-2-oxazoline)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymers with tunable morphologies for biomedical applications
Popis výsledku v původním jazyce
A two-step synthetic approach via the combination of living cationic ring-opening (CROP) and reversible addition–fragmentation chain transfer (RAFT) polymerization techniques was used to produce novel amphiphilic block copolymers based on the water-soluble poly(2-methyl-2-oxazoline) (PMeOx), which holds protein repelling properties, linked to the hydrophilic–hydrophobic pH-responsive block poly[2-(diisopropylamino)ethyl methacrylate] (PDPA). Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was further employed to manufacture block copolymer self-assemblies. Interestingly, although all the synthesized macromolecules contained higher amounts of the pH-responsive segment, the microfluidic approach allowed the manufacturing of core–shell micelles and polymersomes. The morphology seems to be driven by the overall molecular weight of the block copolymers rather than by the hydrophilic-to-hydrophobic weight ratio. Longer and shorter amphiphilic chains enabled the manufacturing of core–shell assemblies and polymeric vesicles, respectively. The use of PMeOx and PDPA blocks confers serum stability and pH-responsive behavior to the nanoparticles in a pH window which is particularly useful for tumour detection and therapy. The self-assembled nanostructures are non-toxic even at fairly high polymer concentrations. All these features therefore can be useful in the design of pH-triggered nanoplatforms of distinct morphologies towards a variety of biomedical applications, for instance, the loading and delivery of hydrophobic and hydrophilic therapeutics.
Název v anglickém jazyce
Engineering of pH-triggered nanoplatforms based on novel poly(2-methyl-2-oxazoline)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymers with tunable morphologies for biomedical applications
Popis výsledku anglicky
A two-step synthetic approach via the combination of living cationic ring-opening (CROP) and reversible addition–fragmentation chain transfer (RAFT) polymerization techniques was used to produce novel amphiphilic block copolymers based on the water-soluble poly(2-methyl-2-oxazoline) (PMeOx), which holds protein repelling properties, linked to the hydrophilic–hydrophobic pH-responsive block poly[2-(diisopropylamino)ethyl methacrylate] (PDPA). Hydrodynamic flow focusing nanoprecipitation microfluidics (MF) was further employed to manufacture block copolymer self-assemblies. Interestingly, although all the synthesized macromolecules contained higher amounts of the pH-responsive segment, the microfluidic approach allowed the manufacturing of core–shell micelles and polymersomes. The morphology seems to be driven by the overall molecular weight of the block copolymers rather than by the hydrophilic-to-hydrophobic weight ratio. Longer and shorter amphiphilic chains enabled the manufacturing of core–shell assemblies and polymeric vesicles, respectively. The use of PMeOx and PDPA blocks confers serum stability and pH-responsive behavior to the nanoparticles in a pH window which is particularly useful for tumour detection and therapy. The self-assembled nanostructures are non-toxic even at fairly high polymer concentrations. All these features therefore can be useful in the design of pH-triggered nanoplatforms of distinct morphologies towards a variety of biomedical applications, for instance, the loading and delivery of hydrophobic and hydrophilic therapeutics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Polymer Chemistry
ISSN
1759-9954
e-ISSN
1759-9962
Svazek periodika
12
Číslo periodika v rámci svazku
19
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
2868-2880
Kód UT WoS článku
000642583400001
EID výsledku v databázi Scopus
2-s2.0-85106186227