Biocompatible polypeptide nanogel: effect of surfactants on nanogelation in inverse miniemulsion, in vivo biodistribution and blood clearance evaluation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F21%3A00542700" target="_blank" >RIV/61389013:_____/21:00542700 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11110/21:10430180 RIV/00216208:11310/21:10430180
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0928493121000035?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0928493121000035?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.msec.2021.111865" target="_blank" >10.1016/j.msec.2021.111865</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Biocompatible polypeptide nanogel: effect of surfactants on nanogelation in inverse miniemulsion, in vivo biodistribution and blood clearance evaluation
Popis výsledku v původním jazyce
Horseradish peroxidase (HRP)/H2O2-mediated crosslinking of polypeptides in inverse miniemulsion is a promising approach for the development of next-generation biocompatible and biodegradable nanogels. Herein, we present a fundamental investigation of the effects of three surfactants and their different concentrations on the (HRP)/H2O2-mediated nanogelation of poly[N5-(2-hydroxyethyl)-l-glutamine-ran-N5-propargyl-l-glutamine-ran-N5-(6-aminohexyl)-l-glutamine]-ran-N5-[2-(4-hydroxyphenyl)ethyl)-l-glutamine] (PHEG-Tyr) in inverse miniemulsion. The surfactants sorbitan monooleate (SPAN 80), polyoxyethylenesorbitan trioleate (TWEEN 85), and dioctyl sulfosuccinate sodium salt (AOT) were selected and their influence on the nanogel size, size distribution, and morphology was evaluated. The most effective nanogelation stabilization was achieved with 20 wt% nonionic surfactant SPAN 80. The diameter of the hydrogel nanoparticles was 230 nm (dynamic light scattering, DLS) and was confirmed also by nanoparticle tracking analysis (NTA) which showed the diameters ranging from 200 to 300 nm. Microscopy and image analyses showed that the nanogel in the dry state was spherical in shape and had number-average diameter Dn = 26 nm and dispersity Ð = 1.91. In the frozen-hydrated state, the nanogel appeared porous and was larger in size with Dn = 182 nm and Ð = 1.52. Our results indicated that the nanogelation of the polymer precursor required a higher concentration of surfactant than classical inverse miniemulsion polymerization to ensure effective stabilization. The developed polypeptide nanogel was radiolabeled with 125I, and in vivo biodistribution and blood clearance evaluations were performed. We found that the 125I-labeled nanogel was well-biodistributed in the bloodstream, cleared from mouse blood during 48 h by renal and hepatic pathways and did not provoke any sign of toxic effects.
Název v anglickém jazyce
Biocompatible polypeptide nanogel: effect of surfactants on nanogelation in inverse miniemulsion, in vivo biodistribution and blood clearance evaluation
Popis výsledku anglicky
Horseradish peroxidase (HRP)/H2O2-mediated crosslinking of polypeptides in inverse miniemulsion is a promising approach for the development of next-generation biocompatible and biodegradable nanogels. Herein, we present a fundamental investigation of the effects of three surfactants and their different concentrations on the (HRP)/H2O2-mediated nanogelation of poly[N5-(2-hydroxyethyl)-l-glutamine-ran-N5-propargyl-l-glutamine-ran-N5-(6-aminohexyl)-l-glutamine]-ran-N5-[2-(4-hydroxyphenyl)ethyl)-l-glutamine] (PHEG-Tyr) in inverse miniemulsion. The surfactants sorbitan monooleate (SPAN 80), polyoxyethylenesorbitan trioleate (TWEEN 85), and dioctyl sulfosuccinate sodium salt (AOT) were selected and their influence on the nanogel size, size distribution, and morphology was evaluated. The most effective nanogelation stabilization was achieved with 20 wt% nonionic surfactant SPAN 80. The diameter of the hydrogel nanoparticles was 230 nm (dynamic light scattering, DLS) and was confirmed also by nanoparticle tracking analysis (NTA) which showed the diameters ranging from 200 to 300 nm. Microscopy and image analyses showed that the nanogel in the dry state was spherical in shape and had number-average diameter Dn = 26 nm and dispersity Ð = 1.91. In the frozen-hydrated state, the nanogel appeared porous and was larger in size with Dn = 182 nm and Ð = 1.52. Our results indicated that the nanogelation of the polymer precursor required a higher concentration of surfactant than classical inverse miniemulsion polymerization to ensure effective stabilization. The developed polypeptide nanogel was radiolabeled with 125I, and in vivo biodistribution and blood clearance evaluations were performed. We found that the 125I-labeled nanogel was well-biodistributed in the bloodstream, cleared from mouse blood during 48 h by renal and hepatic pathways and did not provoke any sign of toxic effects.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Science & Engineering C-Materials for Biological Applications
ISSN
0928-4931
e-ISSN
1873-0191
Svazek periodika
126
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
111865
Kód UT WoS článku
000663454800004
EID výsledku v databázi Scopus
2-s2.0-85106371851