Structure-property relationships in PCL porous scaffolds obtained by means of the TIPS and TIPS-PL methods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F23%3A00565879" target="_blank" >RIV/61389013:_____/23:00565879 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0142941822004275?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0142941822004275?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.polymertesting.2022.107906" target="_blank" >10.1016/j.polymertesting.2022.107906</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structure-property relationships in PCL porous scaffolds obtained by means of the TIPS and TIPS-PL methods
Popis výsledku v původním jazyce
This study aims at characterization of porous poly(ε-caprolactone) (PCL) scaffolds prepared by the methods of thermally induced phase separation (TIPS) and TIPS supported by particulate leaching (PL). Both techniques were combined with freeze-drying. Two PCL grades (with different average molecular weight characterized by MFR 6.1 and 1.2 g/10 min) were employed in the fabrication of scaffolds. Three types of salt (sodium chloride) particles were used in the TIPS-PL preparation of the PCL sample: (i) smaller particles (S) measuring 200–315 μm, (ii) larger particles (B) measuring 500–600 μm, and (iii) mixture of S and B particles (S/B = 1/1 wt/wt). The crystallization behavior of the PCL solutions and the thermal properties of scaffolds were investigated by polarized light microscopy (PLM) and differential scanning calorimetry (DSC), respectively. The structural changes of PCL were studied by attenuated total reflectance infrared spectroscopy (ATR-FTIR). The scaffold structure was visualized by means of scanning electron microscopy (SEM) and X-Ray micro-computed tomography (X-ray micro-CT). Furthermore, the density, porosity, water uptake, contact angle and compressive properties of scaffold were investigated. The molecular weight of PCL had an impact on the crystallization of the PCL solutions and thereby on the crystallinity of scaffolds and the morphology of pore walls formed during TIPS. Sodium chloride grains had an influence on the pore size and overall morphology of foam scaffolds prepared by TIPS-PL. The addition of NaCl decreased significantly the density and compressive properties and increased the porosity and water uptake of scaffolds.
Název v anglickém jazyce
Structure-property relationships in PCL porous scaffolds obtained by means of the TIPS and TIPS-PL methods
Popis výsledku anglicky
This study aims at characterization of porous poly(ε-caprolactone) (PCL) scaffolds prepared by the methods of thermally induced phase separation (TIPS) and TIPS supported by particulate leaching (PL). Both techniques were combined with freeze-drying. Two PCL grades (with different average molecular weight characterized by MFR 6.1 and 1.2 g/10 min) were employed in the fabrication of scaffolds. Three types of salt (sodium chloride) particles were used in the TIPS-PL preparation of the PCL sample: (i) smaller particles (S) measuring 200–315 μm, (ii) larger particles (B) measuring 500–600 μm, and (iii) mixture of S and B particles (S/B = 1/1 wt/wt). The crystallization behavior of the PCL solutions and the thermal properties of scaffolds were investigated by polarized light microscopy (PLM) and differential scanning calorimetry (DSC), respectively. The structural changes of PCL were studied by attenuated total reflectance infrared spectroscopy (ATR-FTIR). The scaffold structure was visualized by means of scanning electron microscopy (SEM) and X-Ray micro-computed tomography (X-ray micro-CT). Furthermore, the density, porosity, water uptake, contact angle and compressive properties of scaffold were investigated. The molecular weight of PCL had an impact on the crystallization of the PCL solutions and thereby on the crystallinity of scaffolds and the morphology of pore walls formed during TIPS. Sodium chloride grains had an influence on the pore size and overall morphology of foam scaffolds prepared by TIPS-PL. The addition of NaCl decreased significantly the density and compressive properties and increased the porosity and water uptake of scaffolds.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Polymer Testing
ISSN
0142-9418
e-ISSN
1873-2348
Svazek periodika
118
Číslo periodika v rámci svazku
15 January
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
107906
Kód UT WoS článku
000921400800001
EID výsledku v databázi Scopus
2-s2.0-85144429040