Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Double-porous polyaniline-based cryogels with carbon nanofibers for supercapacitors

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F24%3A00585476" target="_blank" >RIV/61389013:_____/24:00585476 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11310/24:10480393 RIV/60461373:22310/24:43931042

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acsaem.4c00120" target="_blank" >https://pubs.acs.org/doi/10.1021/acsaem.4c00120</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acsaem.4c00120" target="_blank" >10.1021/acsaem.4c00120</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Double-porous polyaniline-based cryogels with carbon nanofibers for supercapacitors

  • Popis výsledku v původním jazyce

    Polyaniline-poly(N-vinylpyrrolidone) cryogels/aerogels with carbon nanofibers (PANI–CNF–PVP) were prepared by oxidative cryopolymerization of aniline in water:isopropanol medium in the presence of various amounts of dispersed carbon nanofibers (CNF, 0.05–2.5 mg mL–1). Scanning electron microscopy showed that all prepared PANI–CNF–PVP and PANI–PVP aerogels have double-porous morphology, which is represented by macropores (5–35 μm), constituting the main three-dimensional network of the materials, and smaller pores (≈200 nm − 3 μm) in the macropore walls. The incorporation of CNF into PANI–CNF–PVP aerogels was visualized by scanning and transmission electron microscopy and additionally supported by X-ray photoelectron spectroscopy. Surface area of the aerogels was found to be ≈13–25 m2 g–1. Based on full decomposition temperatures determined by TGA, PANI–CNF–PVP aerogels had better thermal stability (792 °C, 2.5 mg mL–1 of CNF) compared to PANI–PVP (750 °C). Starting from the lowest used CNF content (0.05 mg mL–1), PANI–CNF–PVP aerogels demonstrated significantly higher gravimetric capacitance (≈3–6 times), compared to PANI–PVP aerogel, reaching 201 F g–1 (1 A g–1, 1 mg mL–1 of CNF), in the three-electrode setup. These data were supported by electrochemical impedance spectroscopy, showing lower charge transfer resistance for PANI–CNF–PVP aerogels, which decreased with an increasing CNF fraction. CNF-containing aerogels also showed enhanced cycling stability. A two-electrode symmetrical supercapacitor was assembled using PANI–CNF–PVP aerogel (1 mg mL–1 CNF) as the active electrode material. The device reached a gravimetric capacitance of 213 F g–1 (0.5 A g–1) with energy and power densities of 30 Wh kg–1 and 1000 W kg–1, respectively, and showed 95% cycling stability after 1000 cycles. The performance of this supercapacitor is comparable or often exceeds that of previously reported electrode materials, based on conducting polymers and carbon derivatives. Therefore, the prepared PANI–CNF–PVP aerogels are the promising materials for energy storage.

  • Název v anglickém jazyce

    Double-porous polyaniline-based cryogels with carbon nanofibers for supercapacitors

  • Popis výsledku anglicky

    Polyaniline-poly(N-vinylpyrrolidone) cryogels/aerogels with carbon nanofibers (PANI–CNF–PVP) were prepared by oxidative cryopolymerization of aniline in water:isopropanol medium in the presence of various amounts of dispersed carbon nanofibers (CNF, 0.05–2.5 mg mL–1). Scanning electron microscopy showed that all prepared PANI–CNF–PVP and PANI–PVP aerogels have double-porous morphology, which is represented by macropores (5–35 μm), constituting the main three-dimensional network of the materials, and smaller pores (≈200 nm − 3 μm) in the macropore walls. The incorporation of CNF into PANI–CNF–PVP aerogels was visualized by scanning and transmission electron microscopy and additionally supported by X-ray photoelectron spectroscopy. Surface area of the aerogels was found to be ≈13–25 m2 g–1. Based on full decomposition temperatures determined by TGA, PANI–CNF–PVP aerogels had better thermal stability (792 °C, 2.5 mg mL–1 of CNF) compared to PANI–PVP (750 °C). Starting from the lowest used CNF content (0.05 mg mL–1), PANI–CNF–PVP aerogels demonstrated significantly higher gravimetric capacitance (≈3–6 times), compared to PANI–PVP aerogel, reaching 201 F g–1 (1 A g–1, 1 mg mL–1 of CNF), in the three-electrode setup. These data were supported by electrochemical impedance spectroscopy, showing lower charge transfer resistance for PANI–CNF–PVP aerogels, which decreased with an increasing CNF fraction. CNF-containing aerogels also showed enhanced cycling stability. A two-electrode symmetrical supercapacitor was assembled using PANI–CNF–PVP aerogel (1 mg mL–1 CNF) as the active electrode material. The device reached a gravimetric capacitance of 213 F g–1 (0.5 A g–1) with energy and power densities of 30 Wh kg–1 and 1000 W kg–1, respectively, and showed 95% cycling stability after 1000 cycles. The performance of this supercapacitor is comparable or often exceeds that of previously reported electrode materials, based on conducting polymers and carbon derivatives. Therefore, the prepared PANI–CNF–PVP aerogels are the promising materials for energy storage.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10404 - Polymer science

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Applied Energy Materials

  • ISSN

    2574-0962

  • e-ISSN

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    3354-3365

  • Kód UT WoS článku

    001202403500001

  • EID výsledku v databázi Scopus

    2-s2.0-85190846160