Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Rebiopolyols - new components for the synthesis of polyurethane biofoams in line with the circular economy concept

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F24%3A00585561" target="_blank" >RIV/61389013:_____/24:00585561 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1385894724029917?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1385894724029917?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cej.2024.151504" target="_blank" >10.1016/j.cej.2024.151504</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Rebiopolyols - new components for the synthesis of polyurethane biofoams in line with the circular economy concept

  • Popis výsledku v původním jazyce

    The primary goal of the research presented here was to evaluate the possibility of chemolysis of polyurethane biofoams synthesized from vegetable oil-based biopolyols with different chemical structures. As a reference material, a foam synthesized in 100 % from a petrochemical polyol was used. Chemolysis of polyurethane foams was conducted by using diethylene glycol as a solvent with a 1.5:1 wt ratio of biopolyurethane scraps to glycol. The reaction was carried out at 180 °C for 100 min in the presence of potassium hydroxide as a catalyst. The results of the chemolysis of different polyurethane foams were evaluated in terms of the hydroxyl number, amine value, viscosity, molecular weight and FTIR analysis of the new rebiopolyols. It can be concluded that the chemical structures of different biopolyols (obtained through the method of transesterification of vegetable oils with two different reagents and a two-step method of epoxidation and oxirane rings opening) that are used to make biopolyurethane foams have an impact on the course of the chemolysis process and the properties of resultant rebiopolyols. In order to verify the application possibilities of the new components obtained in accordance with the idea of circular economy, extreme conditions were applied in the form of complete replacement of the polyol in the reference foam with the rebiopolyols. It was found that replacing the petrochemical polyol with the repolyol results in partial cell opening, and replacing this component with the rebiopolyols results in open-cell foams. Only the rebiopolyol derived from the biofoam with the biopolyol obtained by transesterification of oil with triethanolamine was not suitable for use in a polyurethane system because its reactivity was too high. In conclusion, there is no need to use catalysts to obtain new biofoams from rebiopolyols given the catalytic nature of the new

  • Název v anglickém jazyce

    Rebiopolyols - new components for the synthesis of polyurethane biofoams in line with the circular economy concept

  • Popis výsledku anglicky

    The primary goal of the research presented here was to evaluate the possibility of chemolysis of polyurethane biofoams synthesized from vegetable oil-based biopolyols with different chemical structures. As a reference material, a foam synthesized in 100 % from a petrochemical polyol was used. Chemolysis of polyurethane foams was conducted by using diethylene glycol as a solvent with a 1.5:1 wt ratio of biopolyurethane scraps to glycol. The reaction was carried out at 180 °C for 100 min in the presence of potassium hydroxide as a catalyst. The results of the chemolysis of different polyurethane foams were evaluated in terms of the hydroxyl number, amine value, viscosity, molecular weight and FTIR analysis of the new rebiopolyols. It can be concluded that the chemical structures of different biopolyols (obtained through the method of transesterification of vegetable oils with two different reagents and a two-step method of epoxidation and oxirane rings opening) that are used to make biopolyurethane foams have an impact on the course of the chemolysis process and the properties of resultant rebiopolyols. In order to verify the application possibilities of the new components obtained in accordance with the idea of circular economy, extreme conditions were applied in the form of complete replacement of the polyol in the reference foam with the rebiopolyols. It was found that replacing the petrochemical polyol with the repolyol results in partial cell opening, and replacing this component with the rebiopolyols results in open-cell foams. Only the rebiopolyol derived from the biofoam with the biopolyol obtained by transesterification of oil with triethanolamine was not suitable for use in a polyurethane system because its reactivity was too high. In conclusion, there is no need to use catalysts to obtain new biofoams from rebiopolyols given the catalytic nature of the new

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10404 - Polymer science

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Chemical Engineering Journal

  • ISSN

    1385-8947

  • e-ISSN

    1873-3212

  • Svazek periodika

    490

  • Číslo periodika v rámci svazku

    15 June

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    10

  • Strana od-do

    151504

  • Kód UT WoS článku

    001236859200001

  • EID výsledku v databázi Scopus

    2-s2.0-85191560735