Aspartate-based polyurea coatings: ambient cure process and inevitable transformation of urea groups into hydantoin cycles in polyurea networks and their impact on film properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F24%3A00585865" target="_blank" >RIV/61389013:_____/24:00585865 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/24:10491351
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0300944024002418?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0300944024002418?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.porgcoat.2024.108449" target="_blank" >10.1016/j.porgcoat.2024.108449</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Aspartate-based polyurea coatings: ambient cure process and inevitable transformation of urea groups into hydantoin cycles in polyurea networks and their impact on film properties
Popis výsledku v původním jazyce
Polyurea protective coatings have gained large interest from research and application in coating and gel polyelectrolyte areas due to their durability, excellent thermal, and mechanical stability, and the possibility of cure without the use of any catalyst or solvent. In this study, we address a chemical mechanism of the aspartate amine–isocyanate cure that involves an unexpected transition of urea bonds into hydantoin bonds. Three aspartic esters (ASPEs) with varying chemical structures were used to study model high-solid (≥60 wt.-% solid content) polyurea coatings. Two linear aliphatic ASPEs with flexible backbones that were prepared using the aza-Michael addition, and a commercial cycloaliphatic aspartic ester (Desmophen® NH 1420) were used as polyurea-based network precursors and were crosslinked with the plant-based tri-isocyanate Desmodur® eco N 7300. The coatings were cured under ambient conditions, and the effect of the molecular structure, chain length of ASPE, cure time, and the simultaneous chemical crosslinking and solvent evaporation on the coating properties were thoroughly investigated. The chemical changes that occurred throughout the film depths were analyzed by FTIR and Raman confocal microscopy. The study revealed the inherent transformation of urea bonds to substituted hydantoin rings. The intensity of transformation depended on the mobility of the polyurea network chain segments in ASPEs. The thermal and mechanical properties characterized by DSC, TGA, uniaxial tensile test, and microindentation hardness test showed the softening effect of the hydantoin group on the networks effective within weeks after the NCO primary cure.
Název v anglickém jazyce
Aspartate-based polyurea coatings: ambient cure process and inevitable transformation of urea groups into hydantoin cycles in polyurea networks and their impact on film properties
Popis výsledku anglicky
Polyurea protective coatings have gained large interest from research and application in coating and gel polyelectrolyte areas due to their durability, excellent thermal, and mechanical stability, and the possibility of cure without the use of any catalyst or solvent. In this study, we address a chemical mechanism of the aspartate amine–isocyanate cure that involves an unexpected transition of urea bonds into hydantoin bonds. Three aspartic esters (ASPEs) with varying chemical structures were used to study model high-solid (≥60 wt.-% solid content) polyurea coatings. Two linear aliphatic ASPEs with flexible backbones that were prepared using the aza-Michael addition, and a commercial cycloaliphatic aspartic ester (Desmophen® NH 1420) were used as polyurea-based network precursors and were crosslinked with the plant-based tri-isocyanate Desmodur® eco N 7300. The coatings were cured under ambient conditions, and the effect of the molecular structure, chain length of ASPE, cure time, and the simultaneous chemical crosslinking and solvent evaporation on the coating properties were thoroughly investigated. The chemical changes that occurred throughout the film depths were analyzed by FTIR and Raman confocal microscopy. The study revealed the inherent transformation of urea bonds to substituted hydantoin rings. The intensity of transformation depended on the mobility of the polyurea network chain segments in ASPEs. The thermal and mechanical properties characterized by DSC, TGA, uniaxial tensile test, and microindentation hardness test showed the softening effect of the hydantoin group on the networks effective within weeks after the NCO primary cure.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Progress in Organic Coatings
ISSN
0300-9440
e-ISSN
1873-331X
Svazek periodika
192
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
22
Strana od-do
108449
Kód UT WoS článku
001239509200001
EID výsledku v databázi Scopus
2-s2.0-85192236016