Synthesis and structure optimization of star copolymers as tunable macromolecular carriers for minimal immunogen vaccine delivery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389013%3A_____%2F24%3A00597653" target="_blank" >RIV/61389013:_____/24:00597653 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68081731:_____/24:00597653
Výsledek na webu
<a href="https://pubs.acs.org/doi/10.1021/acs.bioconjchem.4c00273" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.bioconjchem.4c00273</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.bioconjchem.4c00273" target="_blank" >10.1021/acs.bioconjchem.4c00273</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Synthesis and structure optimization of star copolymers as tunable macromolecular carriers for minimal immunogen vaccine delivery
Popis výsledku v původním jazyce
Minimal immunogen vaccines are being developed to focus antibody responses against otherwise challenging targets, including human immunodeficiency virus (HIV), but multimerization of the minimal peptide immunogen on a carrier platform is required for activity. Star copolymers comprising multiple hydrophilic polymer chains (“arms”) radiating from a central dendrimer unit (“core”) were recently reported to be an effective platform for arraying minimal immunogens for inducing antibody responses in mice and primates. However, the impact of different parameters of the star copolymer (e.g., minimal immunogen density and hydrodynamic size) on antibody responses and the optimal synthetic route for controlling those parameters remains to be fully explored. We synthesized a library of star copolymers composed of poly[N-(2-hydroxypropyl)methacrylamide] hydrophilic arms extending from poly(amidoamine) dendrimer cores with the aim of identifying the optimal composition for use as minimal immunogen vaccines. Our results show that the length of the polymer arms has a crucial impact on the star copolymer hydrodynamic size and is precisely tunable over a range of 20–50 nm diameter, while the dendrimer generation affects the maximum number of arms (and therefore minimal immunogens) that can be attached to the surface of the dendrimer. In addition, high-resolution images of selected star copolymer taken by a custom-modified environmental scanning electron microscope enabled the acquisition of high-resolution images, providing new insights into the star copolymer structure. Finally, in vivo studies assessing a star copolymer vaccine comprising an HIV minimal immunogen showed the criticality of polymer arm length in promoting antibody responses and highlighting the importance of composition tunability to yield the desired biological effect.
Název v anglickém jazyce
Synthesis and structure optimization of star copolymers as tunable macromolecular carriers for minimal immunogen vaccine delivery
Popis výsledku anglicky
Minimal immunogen vaccines are being developed to focus antibody responses against otherwise challenging targets, including human immunodeficiency virus (HIV), but multimerization of the minimal peptide immunogen on a carrier platform is required for activity. Star copolymers comprising multiple hydrophilic polymer chains (“arms”) radiating from a central dendrimer unit (“core”) were recently reported to be an effective platform for arraying minimal immunogens for inducing antibody responses in mice and primates. However, the impact of different parameters of the star copolymer (e.g., minimal immunogen density and hydrodynamic size) on antibody responses and the optimal synthetic route for controlling those parameters remains to be fully explored. We synthesized a library of star copolymers composed of poly[N-(2-hydroxypropyl)methacrylamide] hydrophilic arms extending from poly(amidoamine) dendrimer cores with the aim of identifying the optimal composition for use as minimal immunogen vaccines. Our results show that the length of the polymer arms has a crucial impact on the star copolymer hydrodynamic size and is precisely tunable over a range of 20–50 nm diameter, while the dendrimer generation affects the maximum number of arms (and therefore minimal immunogens) that can be attached to the surface of the dendrimer. In addition, high-resolution images of selected star copolymer taken by a custom-modified environmental scanning electron microscope enabled the acquisition of high-resolution images, providing new insights into the star copolymer structure. Finally, in vivo studies assessing a star copolymer vaccine comprising an HIV minimal immunogen showed the criticality of polymer arm length in promoting antibody responses and highlighting the importance of composition tunability to yield the desired biological effect.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10404 - Polymer science
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bioconjugate Chemistry
ISSN
1043-1802
e-ISSN
1520-4812
Svazek periodika
35
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
15
Strana od-do
1218-1232
Kód UT WoS článku
001282046200001
EID výsledku v databázi Scopus
2-s2.0-85199943997