Simultaneous DC measurements of ion current density and electron temperature using a tunnel probe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F16%3A00468309" target="_blank" >RIV/61389021:_____/16:00468309 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1088/1742-6596/700/1/012018" target="_blank" >http://dx.doi.org/10.1088/1742-6596/700/1/012018</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/700/1/012018" target="_blank" >10.1088/1742-6596/700/1/012018</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simultaneous DC measurements of ion current density and electron temperature using a tunnel probe
Popis výsledku v původním jazyce
The tunnel probe is a concave Langmuir probe designed to operate in strongly magnetized plasma. Due to its shape, the tunnel probe is immune to sheath expansion effects and thus provides absolutely calibrated measurements of the parallel ion current density. A two-dimensional, self-consistent kinetic model is employed to model the flow of charges within the cavity of the tunnel probe. The calculation predicts that the distribution of the ion flux onto the inner conductors depends on the electric field inside the tunnel, which in turn depends on the electron temperature. Therefore, if the tunnel is divided into two negatively biased collectors, it is possible to use the simulation results to determine the electron temperature from the measured ion current ratio. This means that a DC-biased tunnel probe can be used to provide fast, simultaneous measurements of the parallel ion current density and the electron temperature without collecting a single electron. Measurements in the CASTOR and Tore Supra tokamaks agree well with the numerical simulations.
Název v anglickém jazyce
Simultaneous DC measurements of ion current density and electron temperature using a tunnel probe
Popis výsledku anglicky
The tunnel probe is a concave Langmuir probe designed to operate in strongly magnetized plasma. Due to its shape, the tunnel probe is immune to sheath expansion effects and thus provides absolutely calibrated measurements of the parallel ion current density. A two-dimensional, self-consistent kinetic model is employed to model the flow of charges within the cavity of the tunnel probe. The calculation predicts that the distribution of the ion flux onto the inner conductors depends on the electric field inside the tunnel, which in turn depends on the electron temperature. Therefore, if the tunnel is divided into two negatively biased collectors, it is possible to use the simulation results to determine the electron temperature from the measured ion current ratio. This means that a DC-biased tunnel probe can be used to provide fast, simultaneous measurements of the parallel ion current density and the electron temperature without collecting a single electron. Measurements in the CASTOR and Tore Supra tokamaks agree well with the numerical simulations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Journal of Physics Conference Series
ISBN
—
ISSN
1742-6588
e-ISSN
1742-6596
Počet stran výsledku
7
Strana od-do
—
Název nakladatele
IOP Publishing, Ltd.
Místo vydání
Bristol
Místo konání akce
Sozopol
Datum konání akce
21. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000432421500018