Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The DEMO wall load challenge

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F17%3A00475959" target="_blank" >RIV/61389021:_____/17:00475959 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1088/1741-4326/aa4fb4" target="_blank" >http://dx.doi.org/10.1088/1741-4326/aa4fb4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1741-4326/aa4fb4" target="_blank" >10.1088/1741-4326/aa4fb4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The DEMO wall load challenge

  • Popis výsledku v původním jazyce

    For several reasons the challenge to keep the loads to the first wall within engineering limits is substantially higher in DEMO compared to ITER. Therefore the pre-conceptual design development for DEMO that is currently ongoing in Europe needs to be based on load estimates that are derived employing the most recent plasma edge physics knowledge. An initial assessment of the static wall heat load limit in DEMO infers that the steady state peak heat flux limit on the majority of the DEMO first wall should not be assumed to be higher than 1.0 MW m-2. This compares to an average wall heat load of 0.29 MW m-2 for the design assuming a perfect homogeneous distribution. The main part of this publication concentrates on the development of first DEMO estimates for charged particle, radiation, fast particle (all static) and disruption heat loads. Employing an initial engineering wall design with clear optimization potential in combination with parameters for the flat-top phase (x-point configuration), loads up to 7 MW m-2 (penalty factor for tolerances etc not applied) have been calculated. Assuming a fraction of power radiated from the x-point region between 1/5 and 1/3, peaks of the total power flux density due to radiation of 0.6-0.8 MW m-2 are found in the outer baffle region. This first review of wall loads, and the associated limits in DEMO clearly underlines a significant challenge that necessitates substantial engineering efforts as well as a considerable consolidation of the associated physics basis.

  • Název v anglickém jazyce

    The DEMO wall load challenge

  • Popis výsledku anglicky

    For several reasons the challenge to keep the loads to the first wall within engineering limits is substantially higher in DEMO compared to ITER. Therefore the pre-conceptual design development for DEMO that is currently ongoing in Europe needs to be based on load estimates that are derived employing the most recent plasma edge physics knowledge. An initial assessment of the static wall heat load limit in DEMO infers that the steady state peak heat flux limit on the majority of the DEMO first wall should not be assumed to be higher than 1.0 MW m-2. This compares to an average wall heat load of 0.29 MW m-2 for the design assuming a perfect homogeneous distribution. The main part of this publication concentrates on the development of first DEMO estimates for charged particle, radiation, fast particle (all static) and disruption heat loads. Employing an initial engineering wall design with clear optimization potential in combination with parameters for the flat-top phase (x-point configuration), loads up to 7 MW m-2 (penalty factor for tolerances etc not applied) have been calculated. Assuming a fraction of power radiated from the x-point region between 1/5 and 1/3, peaks of the total power flux density due to radiation of 0.6-0.8 MW m-2 are found in the outer baffle region. This first review of wall loads, and the associated limits in DEMO clearly underlines a significant challenge that necessitates substantial engineering efforts as well as a considerable consolidation of the associated physics basis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nuclear Fusion

  • ISSN

    0029-5515

  • e-ISSN

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    AT - Rakouská republika

  • Počet stran výsledku

    11

  • Strana od-do

  • Kód UT WoS článku

    000405943600001

  • EID výsledku v databázi Scopus

    2-s2.0-85015769701