Temporal profile of betatron radiation from laser-driven electron accelerators
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F17%3A00476459" target="_blank" >RIV/61389021:_____/17:00476459 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/17:00320335 RIV/68378271:_____/17:00543854
Výsledek na webu
<a href="http://dx.doi.org/10.1063/1.4985687" target="_blank" >http://dx.doi.org/10.1063/1.4985687</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4985687" target="_blank" >10.1063/1.4985687</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Temporal profile of betatron radiation from laser-driven electron accelerators
Popis výsledku v původním jazyce
The temporal profile of X-ray betatron radiation was theoretically studied for the parameters available with current laser systems. Characteristics of the betatron radiation were investigated for three different configurations of laser wakefield acceleration: typical self-injection regime and optical injection regime with perpendicularly crossed injection and drive beams, both achievable with 100 TW class laser, and ionization injection regime with a sub-10 TW laser system that was experimentally verified. Constructed spectrograms demonstrate that X-ray pulse durations are in the order of few tens of femtoseconds and the optical injection case reveals the possibility of generating X-ray pulses as short as 2.6 fs. The X-ray pulse duration depends mainly on the length of the trapped electron bunch as the emitted photons copropagate with the bunch with nearly the same velocity. These spectrograms were calculated using a novel simplified method based on the theory of Lienard-Wiechert potentials. It takes advantage of the fact that the electron oscillates transversally in the accelerating plasma wave in the wiggler regime and, thus, emits radiation almost exclusively in the turning points of its sine-like trajectory. Therefore, there are only few very narrow time intervals, which contribute significantly to the emission of radiation, while the rest can be neglected. These narrow time intervals are determined from the electron trajectories calculated using particle-in-cell simulations and the power spectrum at given point in far field is computed for each electron using the Fourier transform. Spectrograms of the emitted radiation are constructed by summing contributions of individual particles, since the incoherent nature of the electron bunch is assumed.
Název v anglickém jazyce
Temporal profile of betatron radiation from laser-driven electron accelerators
Popis výsledku anglicky
The temporal profile of X-ray betatron radiation was theoretically studied for the parameters available with current laser systems. Characteristics of the betatron radiation were investigated for three different configurations of laser wakefield acceleration: typical self-injection regime and optical injection regime with perpendicularly crossed injection and drive beams, both achievable with 100 TW class laser, and ionization injection regime with a sub-10 TW laser system that was experimentally verified. Constructed spectrograms demonstrate that X-ray pulse durations are in the order of few tens of femtoseconds and the optical injection case reveals the possibility of generating X-ray pulses as short as 2.6 fs. The X-ray pulse duration depends mainly on the length of the trapped electron bunch as the emitted photons copropagate with the bunch with nearly the same velocity. These spectrograms were calculated using a novel simplified method based on the theory of Lienard-Wiechert potentials. It takes advantage of the fact that the electron oscillates transversally in the accelerating plasma wave in the wiggler regime and, thus, emits radiation almost exclusively in the turning points of its sine-like trajectory. Therefore, there are only few very narrow time intervals, which contribute significantly to the emission of radiation, while the rest can be neglected. These narrow time intervals are determined from the electron trajectories calculated using particle-in-cell simulations and the power spectrum at given point in far field is computed for each electron using the Fourier transform. Spectrograms of the emitted radiation are constructed by summing contributions of individual particles, since the incoherent nature of the electron bunch is assumed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physics of Plasmas
ISSN
1070-664X
e-ISSN
—
Svazek periodika
24
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
—
Kód UT WoS článku
000404639000065
EID výsledku v databázi Scopus
2-s2.0-85020535341