Ion orbit modelling of ELM heat loads on ITER divertor vertical targets.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F17%3A00480858" target="_blank" >RIV/61389021:_____/17:00480858 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.nme.2016.10.005" target="_blank" >http://dx.doi.org/10.1016/j.nme.2016.10.005</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nme.2016.10.005" target="_blank" >10.1016/j.nme.2016.10.005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ion orbit modelling of ELM heat loads on ITER divertor vertical targets.
Popis výsledku v původním jazyce
The high heat flux areas on the vertical divertor targets in the ITER tokamak will consist of cuboid tungsten monoblocks bonded to copper cooling tubes. Three-dimensional ion orbit modelling is used to calculate the heating of tungsten monoblocks during ELMs at the inner vertical target, where the highest surface energy densities are expected. The presence of thin gaps between monoblocks results in exposed edges onto which the heat flux can be focused. ELM ions are focused by their gyromotion onto the magnetically shadowed, long toroidal edges of the monoblocks. The risk of monoblock edge melting is greater than the risk of full surface melting on the plasma-wetted zone. Alternative shaping solutions such as edge chamfering, filleting, and poloidal beveling do not show promise, the melt zone simply migrates to other locations on the monoblocks. Without ELM mitigation, there is a marginal risk of edge melting due to uncontrolled ELMs in the pre-nuclear phase of ITER operation, and an absolute certainty of it in the burning nuclear phase. To avoid edge melting altogether, the surface energy density would have to limited to less than 0.15 MJ/m2.
Název v anglickém jazyce
Ion orbit modelling of ELM heat loads on ITER divertor vertical targets.
Popis výsledku anglicky
The high heat flux areas on the vertical divertor targets in the ITER tokamak will consist of cuboid tungsten monoblocks bonded to copper cooling tubes. Three-dimensional ion orbit modelling is used to calculate the heating of tungsten monoblocks during ELMs at the inner vertical target, where the highest surface energy densities are expected. The presence of thin gaps between monoblocks results in exposed edges onto which the heat flux can be focused. ELM ions are focused by their gyromotion onto the magnetically shadowed, long toroidal edges of the monoblocks. The risk of monoblock edge melting is greater than the risk of full surface melting on the plasma-wetted zone. Alternative shaping solutions such as edge chamfering, filleting, and poloidal beveling do not show promise, the melt zone simply migrates to other locations on the monoblocks. Without ELM mitigation, there is a marginal risk of edge melting due to uncontrolled ELMs in the pre-nuclear phase of ITER operation, and an absolute certainty of it in the burning nuclear phase. To avoid edge melting altogether, the surface energy density would have to limited to less than 0.15 MJ/m2.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nuclear Materials and Energy
ISSN
2352-1791
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
75-83
Kód UT WoS článku
000417293300010
EID výsledku v databázi Scopus
2-s2.0-85005950071