Drastic difference between hole and electron injection through the gradient shell of CdxSeyZn1-xS1-y quantum dots
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F17%3A00481643" target="_blank" >RIV/61389021:_____/17:00481643 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1039/c7nr04495j" target="_blank" >http://dx.doi.org/10.1039/c7nr04495j</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c7nr04495j" target="_blank" >10.1039/c7nr04495j</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Drastic difference between hole and electron injection through the gradient shell of CdxSeyZn1-xS1-y quantum dots
Popis výsledku v původním jazyce
Ultrafast fluorescence spectroscopy was used to investigate the hole injection in CdxSeyZn1-xS1-y gradient core-shell quantum dot (CSQD) sensitized p-type NiO photocathodes. A series of CSQDs with a wide range of shell thicknesses was studied. Complementary photoelectrochemical cell measurements were carried out to confirm that the hole injection from the active core through the gradient shell to NiO takes place. The hole injection from the valence band of the QDs to NiO depends much less on the shell thickness when compared to the corresponding electron injection to n-type semiconductor (ZnO). We simulate the charge carrier tunneling through the potential barrier due to the gradient shell by numerically solving the Schrodinger equation. The details of the band alignment determining the potential barrier are obtained from X-ray spectroscopy measurements. The observed drastic differences between the hole and electron injection are consistent with a model where the hole effective mass decreases, while the gradient shell thickness increases.
Název v anglickém jazyce
Drastic difference between hole and electron injection through the gradient shell of CdxSeyZn1-xS1-y quantum dots
Popis výsledku anglicky
Ultrafast fluorescence spectroscopy was used to investigate the hole injection in CdxSeyZn1-xS1-y gradient core-shell quantum dot (CSQD) sensitized p-type NiO photocathodes. A series of CSQDs with a wide range of shell thicknesses was studied. Complementary photoelectrochemical cell measurements were carried out to confirm that the hole injection from the active core through the gradient shell to NiO takes place. The hole injection from the valence band of the QDs to NiO depends much less on the shell thickness when compared to the corresponding electron injection to n-type semiconductor (ZnO). We simulate the charge carrier tunneling through the potential barrier due to the gradient shell by numerically solving the Schrodinger equation. The details of the band alignment determining the potential barrier are obtained from X-ray spectroscopy measurements. The observed drastic differences between the hole and electron injection are consistent with a model where the hole effective mass decreases, while the gradient shell thickness increases.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nanoscale
ISSN
2040-3364
e-ISSN
—
Svazek periodika
9
Číslo periodika v rámci svazku
34
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
12503-12508
Kód UT WoS článku
000409215300033
EID výsledku v databázi Scopus
2-s2.0-85028699658