Straylight analysis on aspiics, Proba-3 coronagraph
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F18%3A00548847" target="_blank" >RIV/61389021:_____/18:00548847 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1117/12.2536008" target="_blank" >http://dx.doi.org/10.1117/12.2536008</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1117/12.2536008" target="_blank" >10.1117/12.2536008</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Straylight analysis on aspiics, Proba-3 coronagraph
Popis výsledku v původním jazyce
PROBA-3 is a mission devoted to the in-orbit demonstration (IOD) of precise formation flying (F) techniques and technologies for future ESA missions. The mission includes two spacecraft. One of them will act as an external occulter for scientific observations of the solar corona from the other spacecraft, which will hold the ASPIICS coronagraph instrument, under CSL responsibility. The ASPIICS instrument on PROBA-3 looks at the solar corona through a refractive telescope, able to select 3 different spectral bands: Fe XIV line @ 530.4nm, He I D3 line @587.7nm, and the white-light spectral band [540 - 570nm]. The external occulter being located at ∼ 150 meters from the instrument entrance, will allow ASPIICS to observe the corona really close to the solar limb, probably closer than any internally or externally occulted coronagraph ever observed. This paper will present the straylight model and analyses carried out by CSL. A first specificity of the analysis is that the scene on the useful Field of View (FOV) is the solar corona which has a brightness dynamic range as high as 103 between the close corona, close to 1 solar radius (Rsun), and the „distant” corona around 3RSun. The specifications are very stringent for this type of instrument. A consensus was found and will be presented regarding the expected straylight within the FOV. It will also be shown that to achieve realistic estimations it is required to take into account the exact location of the created straylight as well as the entrance field. The second specificity that had to be analyzed is that the diffraction from the solar disk by the external occulter enters the instrument un-obstructed until the internal occulter, and with a brightness 100 times higher than the close corona (∼1RSun) brightness. The simulation of this diffraction as well as its propagation inside the ASPIICS telescope creating additional straylight, had to be carefully established in order to give realistic results of its impact on the performances while being actually possible to compute.
Název v anglickém jazyce
Straylight analysis on aspiics, Proba-3 coronagraph
Popis výsledku anglicky
PROBA-3 is a mission devoted to the in-orbit demonstration (IOD) of precise formation flying (F) techniques and technologies for future ESA missions. The mission includes two spacecraft. One of them will act as an external occulter for scientific observations of the solar corona from the other spacecraft, which will hold the ASPIICS coronagraph instrument, under CSL responsibility. The ASPIICS instrument on PROBA-3 looks at the solar corona through a refractive telescope, able to select 3 different spectral bands: Fe XIV line @ 530.4nm, He I D3 line @587.7nm, and the white-light spectral band [540 - 570nm]. The external occulter being located at ∼ 150 meters from the instrument entrance, will allow ASPIICS to observe the corona really close to the solar limb, probably closer than any internally or externally occulted coronagraph ever observed. This paper will present the straylight model and analyses carried out by CSL. A first specificity of the analysis is that the scene on the useful Field of View (FOV) is the solar corona which has a brightness dynamic range as high as 103 between the close corona, close to 1 solar radius (Rsun), and the „distant” corona around 3RSun. The specifications are very stringent for this type of instrument. A consensus was found and will be presented regarding the expected straylight within the FOV. It will also be shown that to achieve realistic estimations it is required to take into account the exact location of the created straylight as well as the entrance field. The second specificity that had to be analyzed is that the diffraction from the solar disk by the external occulter enters the instrument un-obstructed until the internal occulter, and with a brightness 100 times higher than the close corona (∼1RSun) brightness. The simulation of this diffraction as well as its propagation inside the ASPIICS telescope creating additional straylight, had to be carefully established in order to give realistic results of its impact on the performances while being actually possible to compute.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10306 - Optics (including laser optics and quantum optics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of SPIE The International Society for Optical Engineering
ISBN
9781510621350
ISSN
0277-786X
e-ISSN
—
Počet stran výsledku
10
Strana od-do
"Roč. 11180 (2018)"
Název nakladatele
SPIE
Místo vydání
Bellingham
Místo konání akce
Chania
Datum konání akce
9. 10. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000512543800083