Physics of toroidal gap heat loading on castellated plasma-facing components
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F19%3A00509927" target="_blank" >RIV/61389021:_____/19:00509927 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/19:10396109
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2352179118301844?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2352179118301844?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.nme.2019.02.010" target="_blank" >10.1016/j.nme.2019.02.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Physics of toroidal gap heat loading on castellated plasma-facing components
Popis výsledku v původním jazyce
Because the gaps between plasma-facing components in fusion devices are comparable in size to the ion Larmor radius (of the order of 1 mm), magnetic field line tracing, the so-called optical approximation, cannot accurately predict the fine scale heat load distribution around the gap edges. Finite Larmor radius effects dominate ion deposition. The poloidal component of the ion flux striking the surface is always in the diamagnetic/EXB drift direction, meaning that ions preferentially load one side of the gap. Usually electrons can be described optically due to their smaller Larmor radius. Depending on the local inclination of magnetic flux surfaces, it is possible that ions and electrons wet the same side of the gap, or opposite sides. Two-dimensional particle-in-cell simulations and dedicated experiments performed in the COMPASS tokamak are used to better understand processes responsible for plasma deposition on the sides of toroidal gaps between castellated plasma-facing components in tokamaks. The different contributions of the total incoming flux along a toroidal gap have been observed experimentally for the first time in COMPASS. These experimental results confirm the model predictions, demonstrating that in specific cases the heat deposition does not necessarily follow the optical approximation. The role played by electric fields in the deposition pattern is marginal, contrary to local non-ambipolarity that can change the asymmetrical plasma deposition from one side of the toroidal gap to the other.
Název v anglickém jazyce
Physics of toroidal gap heat loading on castellated plasma-facing components
Popis výsledku anglicky
Because the gaps between plasma-facing components in fusion devices are comparable in size to the ion Larmor radius (of the order of 1 mm), magnetic field line tracing, the so-called optical approximation, cannot accurately predict the fine scale heat load distribution around the gap edges. Finite Larmor radius effects dominate ion deposition. The poloidal component of the ion flux striking the surface is always in the diamagnetic/EXB drift direction, meaning that ions preferentially load one side of the gap. Usually electrons can be described optically due to their smaller Larmor radius. Depending on the local inclination of magnetic flux surfaces, it is possible that ions and electrons wet the same side of the gap, or opposite sides. Two-dimensional particle-in-cell simulations and dedicated experiments performed in the COMPASS tokamak are used to better understand processes responsible for plasma deposition on the sides of toroidal gaps between castellated plasma-facing components in tokamaks. The different contributions of the total incoming flux along a toroidal gap have been observed experimentally for the first time in COMPASS. These experimental results confirm the model predictions, demonstrating that in specific cases the heat deposition does not necessarily follow the optical approximation. The role played by electric fields in the deposition pattern is marginal, contrary to local non-ambipolarity that can change the asymmetrical plasma deposition from one side of the toroidal gap to the other.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nuclear Materials and Energy
ISSN
2352-1791
e-ISSN
—
Svazek periodika
19
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
19-27
Kód UT WoS článku
000470746100004
EID výsledku v databázi Scopus
2-s2.0-85061399921