Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Multi-hollow surface dielectric barrier discharge: an ozone generator with flexible performance and supreme efficiency

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F20%3A00535367" target="_blank" >RIV/61389021:_____/20:00535367 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216224:14310/20:00114480

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1361-6595/aba987" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/aba987</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/aba987" target="_blank" >10.1088/1361-6595/aba987</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Multi-hollow surface dielectric barrier discharge: an ozone generator with flexible performance and supreme efficiency

  • Popis výsledku v původním jazyce

    This contribution investigates the effects of duty cycle and mass flow of synthetic air and oxygen on the efficiency of ozone generation in multi-hollow surface dielectric barrier discharge (MSDBD). It discloses that the efficiency of ozone generation in MSDBD is significantly higher compared with standard coplanar DBD, surface DBD and volume DBDs. Ozone production yield reached 205.5 +/- 29.1 g (kW h)(-1)(40% duty cycle, 8 slm) and 413.91 +/- 58.7 g (kW h)(-1)(100% duty cycle, 8 slm) at an energy cost of 8.7 and 4.3 eV/molecule for synthetic air and oxygen, respectively. Such high ozone yields arose out of the intrinsic characteristics of MSDBD ceramics, which were efficiently cooled by the flow of the working gas. The amplitude modulation of low-frequency 5 kHz high-voltage sine waveforms facilitates controlled O(3)production at a nearly constant rate of yield. Since the correct evaluation of ozone production yield requires precise determination of the discharge power, the concentration of ozone and working gas-flow, considerable attention was paid to measurements of these parameters. It is confirmed and experimentally demonstrated herein that correct determination of discharge power lies with Lissajous figure methods, while the determination of power through the direct integration of productu(t)i(t), wherei(t) is measured by Pearson current probe, leads to systematically lower values of calculated power with consequent overestimation of the ozone production yield. The correct determination of discharge power is clearly the key to the proper calculation of ozone production yield and efficiency. Under the DBD discharge conditions presented herein, ozone production yield and efficiency achieved figures as high as 19.5% and 35.2% of theoretical limits recently established for air and oxygen, respectively.

  • Název v anglickém jazyce

    Multi-hollow surface dielectric barrier discharge: an ozone generator with flexible performance and supreme efficiency

  • Popis výsledku anglicky

    This contribution investigates the effects of duty cycle and mass flow of synthetic air and oxygen on the efficiency of ozone generation in multi-hollow surface dielectric barrier discharge (MSDBD). It discloses that the efficiency of ozone generation in MSDBD is significantly higher compared with standard coplanar DBD, surface DBD and volume DBDs. Ozone production yield reached 205.5 +/- 29.1 g (kW h)(-1)(40% duty cycle, 8 slm) and 413.91 +/- 58.7 g (kW h)(-1)(100% duty cycle, 8 slm) at an energy cost of 8.7 and 4.3 eV/molecule for synthetic air and oxygen, respectively. Such high ozone yields arose out of the intrinsic characteristics of MSDBD ceramics, which were efficiently cooled by the flow of the working gas. The amplitude modulation of low-frequency 5 kHz high-voltage sine waveforms facilitates controlled O(3)production at a nearly constant rate of yield. Since the correct evaluation of ozone production yield requires precise determination of the discharge power, the concentration of ozone and working gas-flow, considerable attention was paid to measurements of these parameters. It is confirmed and experimentally demonstrated herein that correct determination of discharge power lies with Lissajous figure methods, while the determination of power through the direct integration of productu(t)i(t), wherei(t) is measured by Pearson current probe, leads to systematically lower values of calculated power with consequent overestimation of the ozone production yield. The correct determination of discharge power is clearly the key to the proper calculation of ozone production yield and efficiency. Under the DBD discharge conditions presented herein, ozone production yield and efficiency achieved figures as high as 19.5% and 35.2% of theoretical limits recently established for air and oxygen, respectively.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Plasma Sources Science & Technology

  • ISSN

    0963-0252

  • e-ISSN

  • Svazek periodika

    29

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    15

  • Strana od-do

    095014

  • Kód UT WoS článku

    000575395600001

  • EID výsledku v databázi Scopus

    2-s2.0-85092302932