Toroidal modeling of runaway electron loss due to 3-D fields in DIII-D and COMPASS
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F20%3A00538142" target="_blank" >RIV/61389021:_____/20:00538142 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/20:00347601 RIV/00216208:11320/20:10439903
Výsledek na webu
<a href="https://aip.scitation.org/doi/10.1063/5.0021154" target="_blank" >https://aip.scitation.org/doi/10.1063/5.0021154</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0021154" target="_blank" >10.1063/5.0021154</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Toroidal modeling of runaway electron loss due to 3-D fields in DIII-D and COMPASS
Popis výsledku v původním jazyce
The 3-D field induced relativistic runaway electron (RE) loss has been simulated for DIII-D and COMPASS plasmas, utilizing the MARS-F code incorporated with the recently developed and updated RE orbit module (REORBIT). Modeling shows effectively 100% loss of a post-disruption, high-current runaway beam in DIII-D due to the 1 kG level of magnetic field perturbation produced by a fast growing n = 1 resistive kink instability. This complete RE loss is shown to be independent of the particle energy or the initial location of particles in the configuration space. Applied resonant magnetic perturbation (RMP) fields from in-vessel coils are not effective for RE beam mitigation in DIII-D but do produce finite (>10%) RE loss in COMPASS post-disruption plasmas, consistent with experimental observations in the above two devices. The major reasons for this difference in RE control by RMP between these two devices are (i) the coil proximity to the RE beam and (ii) the effective coil current scaling vs the machine size and the toroidal magnetic field. In the modeling, the lost REs due to 3-D fields deposit onto the limiting surfaces of the devices. Distributions of the lost REs to the limiting surface show a poloidally peaked profile near the high-field-side in both DIII-D and COMPASS, covering about 100 ° poloidal angle. A higher perturbation field level and/or higher particle energy also result in REs being lost to the low-field-side of the limiting surface of these two devices, increasing the effective wetted area.
Název v anglickém jazyce
Toroidal modeling of runaway electron loss due to 3-D fields in DIII-D and COMPASS
Popis výsledku anglicky
The 3-D field induced relativistic runaway electron (RE) loss has been simulated for DIII-D and COMPASS plasmas, utilizing the MARS-F code incorporated with the recently developed and updated RE orbit module (REORBIT). Modeling shows effectively 100% loss of a post-disruption, high-current runaway beam in DIII-D due to the 1 kG level of magnetic field perturbation produced by a fast growing n = 1 resistive kink instability. This complete RE loss is shown to be independent of the particle energy or the initial location of particles in the configuration space. Applied resonant magnetic perturbation (RMP) fields from in-vessel coils are not effective for RE beam mitigation in DIII-D but do produce finite (>10%) RE loss in COMPASS post-disruption plasmas, consistent with experimental observations in the above two devices. The major reasons for this difference in RE control by RMP between these two devices are (i) the coil proximity to the RE beam and (ii) the effective coil current scaling vs the machine size and the toroidal magnetic field. In the modeling, the lost REs due to 3-D fields deposit onto the limiting surfaces of the devices. Distributions of the lost REs to the limiting surface show a poloidally peaked profile near the high-field-side in both DIII-D and COMPASS, covering about 100 ° poloidal angle. A higher perturbation field level and/or higher particle energy also result in REs being lost to the low-field-side of the limiting surface of these two devices, increasing the effective wetted area.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physics of Plasmas
ISSN
1070-664X
e-ISSN
—
Svazek periodika
27
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
102507
Kód UT WoS článku
000582511200003
EID výsledku v databázi Scopus
2-s2.0-85092727738