Conceptual design of reciprocating probes and material-testing manipulator for tokamak COMPASS Upgrade
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F22%3A00555588" target="_blank" >RIV/61389021:_____/22:00555588 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/22:00361565
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1748-0221/17/02/C02007" target="_blank" >https://iopscience.iop.org/article/10.1088/1748-0221/17/02/C02007</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1748-0221/17/02/C02007" target="_blank" >10.1088/1748-0221/17/02/C02007</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Conceptual design of reciprocating probes and material-testing manipulator for tokamak COMPASS Upgrade
Popis výsledku v původním jazyce
Three new in-vessel manipulators are designed and built for the new COMPASS Upgrade tokamak with uniquely high vessel temperature (250-500 °C) and heat flux density (perpendicular to divertor surface q ⊥ ∼80 MW/m2 and q ∼GW/m2 at separatrix), which challenges the edge plasma diagnostics. Here we show their detailed engineering designs supported by heat conduction and mechanical models. Deep reciprocation of electrostatic probes near the separatrix should be possible by optimizing older concepts in (a) the head and probe geometry, (b) strongly increasing the deceleration up to 100× gravity by springs and strengthening the manipulator mechanical structure. One reciprocates close to the region of edge plasma influx (the outer midplane), the other at the plasma sink (between the outer divertor strike point and X-point), for studying the plasma divertor (impurity-seeded) detachment and liquid metal vapor transport. Both probe heads are equipped with a set of ball-pen and Langmuir probes, measuring reliably and extremely fast (10-6 s) local (1 mm resolution) plasma potential, density, electron temperature and heat flux and even ion temperature with 10-5 s resolution. The divertor manipulator (without reciprocation) will place various material test targets at the outer divertor. Unique will be its capability to increase 15× the surface heat flux with respect to the surrounding tungsten tiles just by controllable surface inclination of the test targets. We plan to test liquid metal targets where such inclined surface was found critical to achieve the desired mode with lithium vapor shielding. Even in the conservative expected performance of COMPASS Upgrade, we predict to reach and survive the EU DEMO relevant heat fluxes.
Název v anglickém jazyce
Conceptual design of reciprocating probes and material-testing manipulator for tokamak COMPASS Upgrade
Popis výsledku anglicky
Three new in-vessel manipulators are designed and built for the new COMPASS Upgrade tokamak with uniquely high vessel temperature (250-500 °C) and heat flux density (perpendicular to divertor surface q ⊥ ∼80 MW/m2 and q ∼GW/m2 at separatrix), which challenges the edge plasma diagnostics. Here we show their detailed engineering designs supported by heat conduction and mechanical models. Deep reciprocation of electrostatic probes near the separatrix should be possible by optimizing older concepts in (a) the head and probe geometry, (b) strongly increasing the deceleration up to 100× gravity by springs and strengthening the manipulator mechanical structure. One reciprocates close to the region of edge plasma influx (the outer midplane), the other at the plasma sink (between the outer divertor strike point and X-point), for studying the plasma divertor (impurity-seeded) detachment and liquid metal vapor transport. Both probe heads are equipped with a set of ball-pen and Langmuir probes, measuring reliably and extremely fast (10-6 s) local (1 mm resolution) plasma potential, density, electron temperature and heat flux and even ion temperature with 10-5 s resolution. The divertor manipulator (without reciprocation) will place various material test targets at the outer divertor. Unique will be its capability to increase 15× the surface heat flux with respect to the surrounding tungsten tiles just by controllable surface inclination of the test targets. We plan to test liquid metal targets where such inclined surface was found critical to achieve the desired mode with lithium vapor shielding. Even in the conservative expected performance of COMPASS Upgrade, we predict to reach and survive the EU DEMO relevant heat fluxes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Instrumentation
ISSN
1748-0221
e-ISSN
1748-0221
Svazek periodika
17
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
7
Strana od-do
C02007
Kód UT WoS článku
000791423900012
EID výsledku v databázi Scopus
2-s2.0-85125640769