Sliding wear behavior of a sustainable Fe-based coating and its damage mechanisms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F22%3A00559807" target="_blank" >RIV/61389021:_____/22:00559807 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0043164822001375?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0043164822001375?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.wear.2022.204375" target="_blank" >10.1016/j.wear.2022.204375</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sliding wear behavior of a sustainable Fe-based coating and its damage mechanisms
Popis výsledku v původním jazyce
The current industry demand is to identify suitable alternatives to the risk-of-supply prone and/or toxic, WC-Co and electrolytic hard chrome coatings without comprising the desired wear performance. Therefore, compositions based on abundantly available elements (e.g. ‘Fe’) that possess adequate wear resistance are desirable from health, sustainability and economic standpoints. In this work, crystalline Fe-based (Rockit-401) coatings were processed using two different thermal spray routes, i.e. HVOF and HVAF spraying. The influence of deposition route and processing conditions on the microstructure, porosity content, hardness and phase composition was examined. The as-deposited coatings were subjected to mild (5 N) and harsh (15 N) dry sliding wear test conditions by employing alumina ball as the counter surface material, and their wear performance was examined. Mild sliding wear test conditions (5 N) resulted in anomalous wear behavior, where the abrupt drop in CoF at several instances during the test was observed in all the investigated coatings. On the other hand, under harsh wear test conditions (15 N), such an abrupt dip in CoF was not observed. Detailed wear mechanisms of the coatings were revealed under different test conditions (5 N and 15 N). This work sheds light on processing, wear behavior and wear mechanisms of a sustainable and high-performance coating that fulfills non-toxic and sustainability goals in tandem for tribological applications.
Název v anglickém jazyce
Sliding wear behavior of a sustainable Fe-based coating and its damage mechanisms
Popis výsledku anglicky
The current industry demand is to identify suitable alternatives to the risk-of-supply prone and/or toxic, WC-Co and electrolytic hard chrome coatings without comprising the desired wear performance. Therefore, compositions based on abundantly available elements (e.g. ‘Fe’) that possess adequate wear resistance are desirable from health, sustainability and economic standpoints. In this work, crystalline Fe-based (Rockit-401) coatings were processed using two different thermal spray routes, i.e. HVOF and HVAF spraying. The influence of deposition route and processing conditions on the microstructure, porosity content, hardness and phase composition was examined. The as-deposited coatings were subjected to mild (5 N) and harsh (15 N) dry sliding wear test conditions by employing alumina ball as the counter surface material, and their wear performance was examined. Mild sliding wear test conditions (5 N) resulted in anomalous wear behavior, where the abrupt drop in CoF at several instances during the test was observed in all the investigated coatings. On the other hand, under harsh wear test conditions (15 N), such an abrupt dip in CoF was not observed. Detailed wear mechanisms of the coatings were revealed under different test conditions (5 N and 15 N). This work sheds light on processing, wear behavior and wear mechanisms of a sustainable and high-performance coating that fulfills non-toxic and sustainability goals in tandem for tribological applications.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Wear
ISSN
0043-1648
e-ISSN
1873-2577
Svazek periodika
500-501
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
204375
Kód UT WoS článku
000798740900001
EID výsledku v databázi Scopus
2-s2.0-85129693885