High-order curvilinear finite element magneto-hydrodynamics I: A conservative Lagrangian scheme
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F22%3A00560134" target="_blank" >RIV/61389021:_____/22:00560134 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/22:00560629 RIV/68407700:21340/22:00357679
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0021999122002200?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0021999122002200?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcp.2022.111158" target="_blank" >10.1016/j.jcp.2022.111158</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
High-order curvilinear finite element magneto-hydrodynamics I: A conservative Lagrangian scheme
Popis výsledku v původním jazyce
Magneto-hydrodynamics is one of the foremost models in plasma physics with applications in inertial confinement fusion, astrophysics and elsewhere. Advanced numerical methods are needed to get an insight into the complex physical phenomena. The classical Lagrangian methods are typically limited to the low orders of convergence and suffer from violation of the divergence-free condition for magnetic field or conservation of the invariants. This paper is the first part of a new series about high-order non-ideal magneto-hydrodynamics, where a multi-dimensional conservative Lagrangian method based on curvilinear finite elements is presented. The condition on zero divergence of magnetic field and conservation of mass, momentum, magnetic flux and the total energy are satisfied exactly. The curvilinear elements prevent entangling of the computational mesh and its imprinting into the solution. A high-order conservative time integration is applied, where an arbitrary order of convergence is attained for problems of ideal magneto-hydrodynamics. The resistive magnetic field diffusion is solved by an implicit scheme. Description of the method is given and multiple test problems demonstrating properties of the scheme are performed. The construction of the method and possible future directions of development are discussed.
Název v anglickém jazyce
High-order curvilinear finite element magneto-hydrodynamics I: A conservative Lagrangian scheme
Popis výsledku anglicky
Magneto-hydrodynamics is one of the foremost models in plasma physics with applications in inertial confinement fusion, astrophysics and elsewhere. Advanced numerical methods are needed to get an insight into the complex physical phenomena. The classical Lagrangian methods are typically limited to the low orders of convergence and suffer from violation of the divergence-free condition for magnetic field or conservation of the invariants. This paper is the first part of a new series about high-order non-ideal magneto-hydrodynamics, where a multi-dimensional conservative Lagrangian method based on curvilinear finite elements is presented. The condition on zero divergence of magnetic field and conservation of mass, momentum, magnetic flux and the total energy are satisfied exactly. The curvilinear elements prevent entangling of the computational mesh and its imprinting into the solution. A high-order conservative time integration is applied, where an arbitrary order of convergence is attained for problems of ideal magneto-hydrodynamics. The resistive magnetic field diffusion is solved by an implicit scheme. Description of the method is given and multiple test problems demonstrating properties of the scheme are performed. The construction of the method and possible future directions of development are discussed.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational Physics
ISSN
0021-9991
e-ISSN
1090-2716
Svazek periodika
464
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
111158
Kód UT WoS článku
000807745300005
EID výsledku v databázi Scopus
2-s2.0-85130557783