Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Atmospheric pressure Townsend discharge in pure nitrogen A test case for N<inf>2</inf>( A 3 ς u + , v ) kinetics under low E/ N conditions

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F22%3A00565854" target="_blank" >RIV/61389021:_____/22:00565854 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1361-6595/ac7ad1" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6595/ac7ad1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/ac7ad1" target="_blank" >10.1088/1361-6595/ac7ad1</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Atmospheric pressure Townsend discharge in pure nitrogen A test case for N<inf>2</inf>( A 3 ς u + , v ) kinetics under low E/ N conditions

  • Popis výsledku v původním jazyce

    This work investigates the kinetics of the N2( A3ςu+,v ) state in the atmospheric-pressure Townsend discharge (APTD) operated in a barrier discharge setup in pure nitrogen. To understand the complex nature of the N2( A3ςu+,v ) state we have developed a detailed state-to-state vibrational kinetic model of N2 applicable mainly at low reduced electric fields ( < 200 Td). The kinetic model benefits from the determination of the electric field and the electron density profile using the equivalent electric circuit analysis. The knowledge of both parameters significantly reduces the number of free parameters of the model and thus improves the accuracy of kinetic predictions. The results of the kinetic model are compared with the measured emission spectra of the second positive system and the Herman infrared system of N2. The use of the sensitivity analysis method leads to a better understanding of the role of specific elementary processes in the APTD mechanism and also to the determination of the density of the two lowest vibrational levels of N2( A3ςu+ ), which varies between 1012 and 1014 cm-3 depending on the applied voltage. The determination is important, because the two lowest vibrational levels of N2( A3ςu+ ) are considered to play an important role in the secondary emission of electrons from dielectric surfaces. This work shows that the complex state-to-state kinetic modeling in combination with the phase-resolved emission spectroscopy is the key to a better understanding of the processes responsible for establishing and sustaining the APTD mechanism in nitrogen.

  • Název v anglickém jazyce

    Atmospheric pressure Townsend discharge in pure nitrogen A test case for N<inf>2</inf>( A 3 ς u + , v ) kinetics under low E/ N conditions

  • Popis výsledku anglicky

    This work investigates the kinetics of the N2( A3ςu+,v ) state in the atmospheric-pressure Townsend discharge (APTD) operated in a barrier discharge setup in pure nitrogen. To understand the complex nature of the N2( A3ςu+,v ) state we have developed a detailed state-to-state vibrational kinetic model of N2 applicable mainly at low reduced electric fields ( < 200 Td). The kinetic model benefits from the determination of the electric field and the electron density profile using the equivalent electric circuit analysis. The knowledge of both parameters significantly reduces the number of free parameters of the model and thus improves the accuracy of kinetic predictions. The results of the kinetic model are compared with the measured emission spectra of the second positive system and the Herman infrared system of N2. The use of the sensitivity analysis method leads to a better understanding of the role of specific elementary processes in the APTD mechanism and also to the determination of the density of the two lowest vibrational levels of N2( A3ςu+ ), which varies between 1012 and 1014 cm-3 depending on the applied voltage. The determination is important, because the two lowest vibrational levels of N2( A3ςu+ ) are considered to play an important role in the secondary emission of electrons from dielectric surfaces. This work shows that the complex state-to-state kinetic modeling in combination with the phase-resolved emission spectroscopy is the key to a better understanding of the processes responsible for establishing and sustaining the APTD mechanism in nitrogen.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10305 - Fluids and plasma physics (including surface physics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-04023S" target="_blank" >GA15-04023S: Pokročilý výzkum kinetických procesů ve streamerových výbojích</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Plasma Sources Science & Technology

  • ISSN

    0963-0252

  • e-ISSN

    1361-6595

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    8

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    22

  • Strana od-do

    084004

  • Kód UT WoS článku

    000841605600001

  • EID výsledku v databázi Scopus

    2-s2.0-85136642482