Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Processing and Properties of Tungsten-Steel Composites and FGMs Prepared by Spark Plasma Sintering

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F22%3A00567526" target="_blank" >RIV/61389021:_____/22:00567526 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/1996-1944/15/24/9037" target="_blank" >https://www.mdpi.com/1996-1944/15/24/9037</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma15249037" target="_blank" >10.3390/ma15249037</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Processing and Properties of Tungsten-Steel Composites and FGMs Prepared by Spark Plasma Sintering

  • Popis výsledku v původním jazyce

    Tungsten is the prime candidate material for the plasma-facing components of fusion reactors. For the joining of tungsten armor to the cooling system or support structure, composites or graded interlayers can be used to reduce the stress concentration at the interface. These interlayers can be produced by several technologies. Among these, spark plasma sintering appears advantageous because of its ability to fabricate fully dense parts at lower temperatures and in a shorter time than traditional powder metallurgy techniques, thanks to the concurrent application of temperature, pressure, and electrical current. In this work, spark plasma sintering of tungsten-steel composites and functionally graded layers (FGMs) was investigated. As a first step, pure tungsten and steel powders of different sizes were sintered at a range of temperatures to find a suitable temperature window for fully dense compacts. Characterization of the sintered compacts included structure (by SEM), porosity (by the Archimedean method and image analysis), thermal diffusivity (by the flash method) and mechanical properties (microhardness and flexural strength). Compacts with practically full density and fine grains were obtained, while the temperature needed to achieve full sintering decreased with decreasing powder size (down to about 1500 °C for the 0.4 μm powder). For fully sintered compacts, the hardness and thermal diffusivity increased with decreasing powder size. Composites with selected tungsten/steel ratios were produced at several conditions and characterized. At temperatures of 1100 °C or above, intermetallic formation was observed in the composites, nevertheless, without a detrimental effect on the mechanical strength. Finally, the formation of graded layers and tungsten-steel joints in various configurations was demonstrated.

  • Název v anglickém jazyce

    Processing and Properties of Tungsten-Steel Composites and FGMs Prepared by Spark Plasma Sintering

  • Popis výsledku anglicky

    Tungsten is the prime candidate material for the plasma-facing components of fusion reactors. For the joining of tungsten armor to the cooling system or support structure, composites or graded interlayers can be used to reduce the stress concentration at the interface. These interlayers can be produced by several technologies. Among these, spark plasma sintering appears advantageous because of its ability to fabricate fully dense parts at lower temperatures and in a shorter time than traditional powder metallurgy techniques, thanks to the concurrent application of temperature, pressure, and electrical current. In this work, spark plasma sintering of tungsten-steel composites and functionally graded layers (FGMs) was investigated. As a first step, pure tungsten and steel powders of different sizes were sintered at a range of temperatures to find a suitable temperature window for fully dense compacts. Characterization of the sintered compacts included structure (by SEM), porosity (by the Archimedean method and image analysis), thermal diffusivity (by the flash method) and mechanical properties (microhardness and flexural strength). Compacts with practically full density and fine grains were obtained, while the temperature needed to achieve full sintering decreased with decreasing powder size (down to about 1500 °C for the 0.4 μm powder). For fully sintered compacts, the hardness and thermal diffusivity increased with decreasing powder size. Composites with selected tungsten/steel ratios were produced at several conditions and characterized. At temperatures of 1100 °C or above, intermetallic formation was observed in the composites, nevertheless, without a detrimental effect on the mechanical strength. Finally, the formation of graded layers and tungsten-steel joints in various configurations was demonstrated.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Materials

  • ISSN

    1996-1944

  • e-ISSN

    1996-1944

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    24

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    17

  • Strana od-do

    9037

  • Kód UT WoS článku

    000904439500001

  • EID výsledku v databázi Scopus

    2-s2.0-85144822163