Equations of motion governing the dynamics of the exceptional points of parameterically dependent nonhermitian Hamiltonians
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F23%3A00571732" target="_blank" >RIV/61389021:_____/23:00571732 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10475044
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1751-8121/acc0ea" target="_blank" >https://iopscience.iop.org/article/10.1088/1751-8121/acc0ea</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1751-8121/acc0ea" target="_blank" >10.1088/1751-8121/acc0ea</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Equations of motion governing the dynamics of the exceptional points of parameterically dependent nonhermitian Hamiltonians
Popis výsledku v původním jazyce
We study exceptional points (EPs) of a nonhermitian Hamiltonian circumflex expressionccent H(lambda, delta) whose parameters lambda is an element of C and (delta is an element of R. As the real control parameter (delta is varied, the kth EP (or kth cluster of simultaneously existing EPs) of circumflex expressionccent H(lambda, delta) moves in the complex plane of lambda along a continuous trajectory, lambda(k)(delta). Using an appropriate non-hermitian formalism (based upon the c-product and not upon the conventional Dirac product), we derive a self-contained set of equations of motion (EOM) for the trajectory lambda(k)(delta), while interpreting delta as the propagation time. Such EOM become of interest whenever one wishes to study the response of EPs to external perturbations or continuous parametric changes of the pertinent Hamiltonian. This is e.g. the case of EPs emanating from hermitian curve crossings/degeneracies (which turn into avoided crossings/neardegeneracies when the Hamiltonian parameters are continuously varied). The presented EOM for EPs have not only their theoretical merits, they possess also a substantial practical relevance. Namely, the just presented approach can be regarded even as an efficient numerical method, useful for generating EPs for a broad class of complex quantum systems encountered in atomic, nuclear and condensed matter physics. Performance of such a method is tested here numerically on a simple yet nontrivial toy model.
Název v anglickém jazyce
Equations of motion governing the dynamics of the exceptional points of parameterically dependent nonhermitian Hamiltonians
Popis výsledku anglicky
We study exceptional points (EPs) of a nonhermitian Hamiltonian circumflex expressionccent H(lambda, delta) whose parameters lambda is an element of C and (delta is an element of R. As the real control parameter (delta is varied, the kth EP (or kth cluster of simultaneously existing EPs) of circumflex expressionccent H(lambda, delta) moves in the complex plane of lambda along a continuous trajectory, lambda(k)(delta). Using an appropriate non-hermitian formalism (based upon the c-product and not upon the conventional Dirac product), we derive a self-contained set of equations of motion (EOM) for the trajectory lambda(k)(delta), while interpreting delta as the propagation time. Such EOM become of interest whenever one wishes to study the response of EPs to external perturbations or continuous parametric changes of the pertinent Hamiltonian. This is e.g. the case of EPs emanating from hermitian curve crossings/degeneracies (which turn into avoided crossings/neardegeneracies when the Hamiltonian parameters are continuously varied). The presented EOM for EPs have not only their theoretical merits, they possess also a substantial practical relevance. Namely, the just presented approach can be regarded even as an efficient numerical method, useful for generating EPs for a broad class of complex quantum systems encountered in atomic, nuclear and condensed matter physics. Performance of such a method is tested here numerically on a simple yet nontrivial toy model.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics A-Mathematical and Theoretical
ISSN
1751-8113
e-ISSN
1751-8121
Svazek periodika
56
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
145201
Kód UT WoS článku
000948843000001
EID výsledku v databázi Scopus
2-s2.0-85150416276