Conceptual design of Fiber Bragg Grating temperature sensors for heat load measurements in COMPASS-U plasma-facing components
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F23%3A00573324" target="_blank" >RIV/61389021:_____/23:00573324 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21340/23:00369375 RIV/00216208:11320/23:10468488
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0920379623001928?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0920379623001928?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fusengdes.2023.113608" target="_blank" >10.1016/j.fusengdes.2023.113608</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Conceptual design of Fiber Bragg Grating temperature sensors for heat load measurements in COMPASS-U plasma-facing components
Popis výsledku v původním jazyce
Information about the temperature of plasma-facing components is important for a reliable tokamak operation. A temperature monitoring system using Fiber Bragg Grating (FBG) sensors is foreseen for the new tokamak COMPASS Upgrade, which is currently starting its construction. This diagnostic can be a valuable complement to IR thermography, thermocouples, and Langmuir probe divertor diagnostics. The system will be optimized to estimate the steady-state and transient heat loads, such as runaway electrons, on the divertor and limiters. In this contribution, current progress in the design of the FBG sensors for the COMPASS-U initial open divertor and guard limiters is presented. The heat flux on the plasma-facing components is modeled for diverted and first phase circular plasma scenarios by the PFCFlux code. The subsequent heating and the mechanical strain in the components dedicated for the placement of the sensors is simulated by the finite element analysis software ANSYS. Using these results, the optimal placement and configuration of the sensors are determined with respect to the anticipated maximum temperature and gradients.
Název v anglickém jazyce
Conceptual design of Fiber Bragg Grating temperature sensors for heat load measurements in COMPASS-U plasma-facing components
Popis výsledku anglicky
Information about the temperature of plasma-facing components is important for a reliable tokamak operation. A temperature monitoring system using Fiber Bragg Grating (FBG) sensors is foreseen for the new tokamak COMPASS Upgrade, which is currently starting its construction. This diagnostic can be a valuable complement to IR thermography, thermocouples, and Langmuir probe divertor diagnostics. The system will be optimized to estimate the steady-state and transient heat loads, such as runaway electrons, on the divertor and limiters. In this contribution, current progress in the design of the FBG sensors for the COMPASS-U initial open divertor and guard limiters is presented. The heat flux on the plasma-facing components is modeled for diverted and first phase circular plasma scenarios by the PFCFlux code. The subsequent heating and the mechanical strain in the components dedicated for the placement of the sensors is simulated by the finite element analysis software ANSYS. Using these results, the optimal placement and configuration of the sensors are determined with respect to the anticipated maximum temperature and gradients.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10304 - Nuclear physics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Fusion Engineering and Design
ISSN
0920-3796
e-ISSN
1873-7196
Svazek periodika
193
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
113608
Kód UT WoS článku
000982665500001
EID výsledku v databázi Scopus
2-s2.0-85151784233