Laser-induced electron dynamics and surface modification in ruthenium thin films
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61389021%3A_____%2F23%3A00582474" target="_blank" >RIV/61389021:_____/23:00582474 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/23:00572145
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0042207X23002427?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0042207X23002427?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.vacuum.2023.112045" target="_blank" >10.1016/j.vacuum.2023.112045</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Laser-induced electron dynamics and surface modification in ruthenium thin films
Popis výsledku v původním jazyce
We performed the experimental and theoretical study of the heating and damaging of ruthenium thin films induced by femtosecond laser irradiation. We present the results of an optical pump-probe thermoreflectance experiment with rotating sample allowing to significantly reduce heat accumulation in irradiated spot. We show the evolution of surface morphology from growth of a heat-induced oxide layer at low and intermediate laser fluences to cracking and grooving at high fluences. Theoretical analysis of thermoreflectance in our pump-probe experiment allows us to relate behavior of hot electrons in ruthenium to the Fermi smearing mechanism. This conclusion invites more research on Fermi smearing of transition metals. The analysis of heating is performed with the two-temperature modeling and molecular dynamics simulation, results of which demonstrate that the calculated single-shot melting threshold is higher than experimental damage threshold. We suggest that the onset of Ru film damage is caused by the heat-induced stresses that lead to cracking of the Ru film. Such damage accumulates during repetitive exposure to light.
Název v anglickém jazyce
Laser-induced electron dynamics and surface modification in ruthenium thin films
Popis výsledku anglicky
We performed the experimental and theoretical study of the heating and damaging of ruthenium thin films induced by femtosecond laser irradiation. We present the results of an optical pump-probe thermoreflectance experiment with rotating sample allowing to significantly reduce heat accumulation in irradiated spot. We show the evolution of surface morphology from growth of a heat-induced oxide layer at low and intermediate laser fluences to cracking and grooving at high fluences. Theoretical analysis of thermoreflectance in our pump-probe experiment allows us to relate behavior of hot electrons in ruthenium to the Fermi smearing mechanism. This conclusion invites more research on Fermi smearing of transition metals. The analysis of heating is performed with the two-temperature modeling and molecular dynamics simulation, results of which demonstrate that the calculated single-shot melting threshold is higher than experimental damage threshold. We suggest that the onset of Ru film damage is caused by the heat-induced stresses that lead to cracking of the Ru film. Such damage accumulates during repetitive exposure to light.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Vacuum
ISSN
0042-207X
e-ISSN
1879-2715
Svazek periodika
212
Číslo periodika v rámci svazku
June
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
12
Strana od-do
112045
Kód UT WoS článku
000981025200001
EID výsledku v databázi Scopus
2-s2.0-85151528799